Skip to main content
Log in

One condition for solution uniqueness and robustness of both l1-synthesis and l1-analysis minimizations

Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

The 1-synthesis model and the 1-analysis model recover structured signals from their undersampled measurements. The solution of the former is a sparse sum of dictionary atoms, and that of the latter makes sparse correlations with dictionary atoms. This paper addresses the question: when can we trust these models to recover specific signals? We answer the question with a condition that is both necessary and sufficient to guarantee the recovery to be unique and exact and, in the presence of measurement noise, to be robust. The condition is one–for–all in the sense that it applies to both the 1-synthesis and 1-analysis models, to both constrained and unconstrained formulations, and to both the exact recovery and robust recovery cases. Furthermore, a convex infinity–norm optimization problem is introduced for numerically verifying the condition. A comprehensive comparison with related existing conditions is included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Elad, M., Milanfar, P., Rubinstein, R.: Analysis versus synthesis in signal priors. Inverse Prob. 23(3), 947 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Fuchs, J.J.: On sparse representations in arbitrary redundant bases. IEEE Trans. Inf. Theory 50(6), 1341–1344 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Candes, E.J., Plan, Y.: A probabilistic and RIPless theory of compressed sensing. IEEE Trans. Inf. Theory 57(11), 7235–7254 (2011)

    Article  MathSciNet  Google Scholar 

  4. Candes, E.: The restricted isometry property and its implications for compressed sensing. Comptes Rendus Mathematique 346(9-10), 589–592 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cohen, A., Dahmen, W., Devore, R.: Compressed sensing and best k-term approximation. J. Am. Math. Soc., 211–231 (2009)

  6. Zhang, Y.: Theory of compressive sensing via 1-minimization: a non-RIP analysis and extensions. J. Oper. Res. Soc. China 1(1), 79–105 (2013)

    Article  MATH  Google Scholar 

  7. Grasmair, M: Linear convergence rates for tikhonov regularization with positively homogeneous functionals. Inverse Prob. 27(7), 075014 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Vaiter, S., Peyre, G., Dossal, C., Fadili, J.: Robust sparse analysis regularization. IEEE Trans. Inf. Theory 59(4), 2001–2016 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Haltmeier, M.: Stable signal reconstruction via 1 -minimization in redundant, non-tight frames. IEEE Trans. Signal Process. 61(2), 420–426 (2013)

    Article  MathSciNet  Google Scholar 

  10. Needell, D., Ward, R.: Stable image reconstruction using total variation minimization. SIAM Journal on Imaging Sciences 6(2), 1035–1058 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Needell, D., Ward, R.: Near-optimal compressed sensing guarantees for total variation minimization. IEEE Trans. Image Process. 22(10), 3941–3949 (2013)

    Article  MathSciNet  Google Scholar 

  12. Krahmer, F., Ward, R.: Stable and robust sampling strategies for compressive imaging. IEEE Trans. Image Process. 23(2), 612–622 (2014)

    Article  MathSciNet  Google Scholar 

  13. Kabanava, M., Rauhut, H., Zhang, H.: Robust analysis 1-recovery from gaussian measurements and total variation minimization. Eur. J. Appl. Math. 26(6), 917–929 (2015)

    Article  MathSciNet  Google Scholar 

  14. Vaiter, S., Golbabaee, M., Fadili, J., Peyré, G.: Model selection with low complexity priors. Information and Inference 4(3), 230–287 (2015)

    MathSciNet  Google Scholar 

  15. Zhang, H., Cheng, L.: On uniqueness guarantees of solution in convex regularized linear inverse problems. Linear Algebra Appl. 486, 475–483 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Burger, M., Osher, S.: Convergence rates of convex variational regularization. Inverse Prob. 20(5), 1411 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Grasmair, M., Haltmeier, M., Scherzer, O.: Necessary and sufficient conditions for linear convergence of 1-regularization. Commun. Pure Appl. Math. 64(2), 161–182 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhang, H., Yin, W., Cheng, L.: Necessary and sufficient conditions of solution uniqueness in 1-norm minimization. J. Optim. Theory Appl. 164, 109–122 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hügel, M., Rauhut, H., Strohme, T.: Remote sensing via 1-minimization. Found. Comput. Math. 14, 115–150 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Foucart, S., Rauhut, H.: A mathematical introduction to compressive sensing. Applied and Numerical Harmonic Analysis. Birkhäuser (2013)

  21. Nam, S., Davies, M.E., Elad, M., Gribonval, R.: The cosparse analysis model and algorithms. Appl. Comput. Harmon. Anal. 34(1), 30–56 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  23. Candès, E.J., Eldar, Y.C., Needell, D., Randall, P.: Compressed sensing with coherent and redundant dictionaries. Appl. Comput. Harmon. Anal. 31 (1), 59–73 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu, Y., Mi, T., Li, S.: Compressed sensing with general frames via optimal-dual-based 1 -analysis. IEEE Trans. Inf. Theory 58(7), 4201–4214 (2012)

    Article  MathSciNet  Google Scholar 

  25. Donoho, D.L., Tanner, J.: Sparse nonnegative solution of underdetermined linear equations by linear programming. Proc. Natl. Acad. Sci. U.S.A. 102(27), 9446–9451 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Chandrasekaran, V., Recht, B., Parrilo, P.A., Willsky, A.S.: The convex geometry of linear inverse problems. Found. Comput. Math. 12(6), 805–849 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kabanava, M., Rauhut, H.: Analysis 1-recovery with frames and gaussian measurements. Acta Applicandae Mathematicae 140(1), 173–195 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Foucart, S.: Stability and robustness of 1-minimizations with weibull matrices and redundant dictionaries. Linear Algebra Appl. 441, 4–21 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Fuchs, J.J.: Recovery of exact sparse representations in the presence of bounded noise. IEEE Trans. Inf. Theory 51(10), 3601–3608 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tibshirani, R.J.: The lasso problem and uniqueness. Electronic Journal of Statistics 7, 1456–1490 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Fadili, J., Peyré, G., Vaiter, S., Deledalle, C.-A., Salmon, J.: Stable Recovery with Analysis Decomposable Priors. In: Proceedings of Signal Processing with Adaptive Sparse Structured Representations (SPARS) (2013)

  32. Tropp, J.A.: Greed is good: algorithmic results for sparse approximation. IEEE Trans. Inf. Theory 50(10), 2231–2242 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Yan.

Additional information

Communicated by: Yuesheng Xu

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Yan, M. & Yin, W. One condition for solution uniqueness and robustness of both l1-synthesis and l1-analysis minimizations. Adv Comput Math 42, 1381–1399 (2016). https://doi.org/10.1007/s10444-016-9467-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-016-9467-y

Keywords

Mathematics Subject Classification (2010)

Navigation