Skip to main content
Log in

From approximating to interpolatory non-stationary subdivision schemes with the same generation properties

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper we describe a general, computationally feasible strategy to deduce a family of interpolatory non-stationary subdivision schemes from a symmetric non-stationary, non-interpolatory one satisfying quite mild assumptions. To achieve this result we extend our previous work (Conti et al., Linear Algebra Appl 431(10):1971–1987, 2009) to full generality by removing additional assumptions on the input symbols. For the so obtained interpolatory schemes we prove that they are capable of reproducing the same space of exponential polynomials as the one generated by the original approximating scheme. Moreover, we specialize the computational methods for the case of symbols obtained by shifted non-stationary affine combinations of exponential B-splines, that are at the basis of most non-stationary subdivision schemes. In this case we find that the associated family of interpolatory symbols can be determined to satisfy a suitable set of generalized interpolating conditions at the set of the zeros (with reversed signs) of the input symbol. Finally, we discuss some computational examples by showing that the proposed approach can yield novel smooth non-stationary interpolatory subdivision schemes possessing very interesting reproduction properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beccari, C., Casciola, G., Romani, L.: A non-stationary uniform tension controlled interpolating 4-point scheme reproducing conics. Comput. Aided Geom. Des. 24(1), 1–9 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beccari, C., Casciola, G., Romani, L.: A unified framework for interpolating and approximating univariate subdivision. Appl. Math. Comput. 216(4), 1169–1180 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Birkhoff, G., Rota, G.-C.: Ordinary Differential Equations, 4th edn. Wiley, New York (1989)

    Google Scholar 

  4. Cavaretta, A.S., Dahmen, W., Micchelli, C.A.: Stationary subdivision. Mem. Am. Math. Soc. vol. 453 (1991)

  5. Conti, C., Romani, L.: Affine combination of B-spline subdivision masks and its non-stationary counterparts. BIT Num. Math. 50(2), 269–299 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Conti, C., Romani, L.: Algebraic conditions on non-stationary subdivision symbols for exponential polynomial reproduction. J. Comput. Appl. Math. (2011). doi:10.1016/j.cam.2011.03.031

    Google Scholar 

  7. Conti, C., Gemignani, L., Romani, L.: From symmetric subdivision masks of Hurwitz type to interpolatory subdivision masks. Linear Algebra Appl. 431, 1971–1987 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Conti, C., Gemignani, L., Romani, L.: Solving Bezout-like polynomial equations for the design of interpolatory subdivision schemes. In: Proceedings of the 35th International Symposium on Symbolic and Algebraic Computation (ISSAC), Munchen, Germany, 25–28 July, pp. 251–256 (2010)

  9. Deslauriers, G., Dubuc, S.: Symmetric iterative interpolation processes. Constr. Approx. 5, 49–68 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dyn, N., Levin, D.: Analysis of asymptotically equivalent binary subdivision schemes. J. Math. Anal. Appl. 193, 594–621 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dyn, N., Levin, D.: Subdivision schemes in geometric modelling. Acta Numer. 11, 73–144 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dyn, N., Levin, D., Luzzatto, A.: Exponentials reproducing subdivision schemes. Found. Comput. Math. 3(2), 187–206 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dyn, N., Hormann, K., Sabin, M.A., Shen, Z.: Polynomial reproduction by symmetric subdivision schemes. J. Approx. Theory 155, 28–42 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dubuc, S.: Interpolation through an iterative scheme. J. Math. Anal. Appl. 114, 185–204 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  15. Henrici, P.: Applied and Computational Complex Analysis, vol. 1. Wiley Classics Library. Wiley, New York (1988)

    Google Scholar 

  16. Li, G., Ma, W.: A method for constructing interpolatory subdivision schemes and blending subdivisions. Comput. Graph. Forum 26, 185–201 (2007)

    Article  Google Scholar 

  17. Lin, S., Luo, X., You, F., Li, Z.: Deducing interpolating subdivision schemes from approximating subdivision schemes. ACM Trans. Graph. 27(5), article 146, 7 pp. (2008)

  18. Maillot, J., Stam, J.: A unified subdivision scheme for polygonal modeling. Comput. Graph. Forum 20(3), 471–479 (2001)

    Article  Google Scholar 

  19. Micchelli, C.A.: Interpolatory subdivision schemes and wavelets. J. Approx. Theory 86(1), 41–71 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Morin, G., Warren, J., Weimer, H.: A subdivision scheme for surfaces of revolution. Comput. Aided Geom. Des. 18(5), 483–502 (2001). Subdivision algorithms (Schloss Dagstuhl, 2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Peña, J.M.: Characterizations and stable tests for the Routh–Hurwitz conditions and for total positivity. Linear Algebra Appl. 393, 319–332 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rioul, O.: Simple regularity criteria for subdivision schemes. SIAM J.Math. Anal. 23(6), 1544–1576 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  23. Romani, L.: From approximating subdivision schemes for exponential splines to high-performance interpolating algorithms. J. Comput. Appl. Math. 224(1), 383–396 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rossignac, J.: Education-driven research in CAD. Comput. Aided Des. 36(3), 1461–1469 (2004)

    Article  Google Scholar 

  25. Schumaker, L.L.: Spline Functions: Basic Theory, 3rd edn. Cambridge Mathematical Library. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  26. Vonesch, C., Blu, T., Unser, M.: Generalized Daubechies wavelet families. IEEE Trans. Signal Process. 55(9), 4415–4429 (2007)

    Article  MathSciNet  Google Scholar 

  27. Warren, J., Weimer, H.: Subdivision Methods for Geometric Design: A Constructive Approach. Morgan Kaufmann, San Francisco (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costanza Conti.

Additional information

Communicated by Juan Manuel Peña.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conti, C., Gemignani, L. & Romani, L. From approximating to interpolatory non-stationary subdivision schemes with the same generation properties. Adv Comput Math 35, 217–241 (2011). https://doi.org/10.1007/s10444-011-9175-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-011-9175-6

Keywords

Mathematics Subject Classifications (2010)

Navigation