Skip to main content
Log in

Hygrothermal Vibration and Damping Behavior of Magnetostrictive Sandwich Plate Resting On Pasternak’s Foundations

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

In the present study, the vibration behavior of laminated sandwich plate resting on a two-parameter elastic foundation, containing embedded magnetostrictive actuating layers and homogeneous core, is investigated. The plate is subjected to three different types of hygrothermal environments: uniform, linear and nonlinear distributions. The system associated with the vibration problem for the simply supported rectangular plate under the hygrothermal effect is derived based on Hamilton’s principle. The system solutions are obtained depending on Navier’s technique. Parametric effects due to the elastic foundation, smart layer location, lamination schemes, mode numbers, feedback gain control value, thickness ratio, aspect ratio, core thickness-to-fiber reinforced layer thickness ratio, magnetostrictive layer thickness to fiber-reinforced layer thickness ratio, temperature and moisture factors on vibration characteristics of the structure, are analyzed and discussed in detail. Numerical results can be useful as a benchmark for future studies of hygro-thermo-dynamic influences on structural applications in various fields as well as the suggested model can be contributed to the development of vibration control of advanced structural applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability

Not Applicable.

References

  1. Daniel, I.M., Ishai, O.: Engineering mechanics of composite materials. Oxford University Press, New York (1994)

    Google Scholar 

  2. Kapania, R.K., Raciti, S.: Recent advances in analysis of laminated beams and plates, part I: shear effects and buckling. AIAA J. 27, 923–934 (1989)

    Article  Google Scholar 

  3. Kapania, R.K., Raciti, S.: Recent advances in analysis of laminated beams and plates, part II: vibration and wave propagation. AIAA J. 27, 935–946 (1989)

    Article  Google Scholar 

  4. King, T.R., Blackketter, D.M., Walrath, D.E., Adams, D.F.: Micromechanics prediction of the shear strength of carbon fiber/epoxy matrix composites: the influence of the matrix and interface strengths. J. Compos. Mater. 26(4), 558–573 (1992)

    Article  CAS  Google Scholar 

  5. Zenkour, A.M., Radwan, A.F.: Analysis of multilayered composite plates resting on elastic foundations in thermal environment using a hyperbolic model. J. Brazilian Society Mech. Sci. Eng. 39(7), 2801–2816 (2017)

    Article  Google Scholar 

  6. Arefi, M., Zenkour, A.M.: Electro-magneto-elastic analysis of a three-layer curved beam. Smart Struct. Sys. 19(6), 695–703 (2017)

    Google Scholar 

  7. Kolahchi, R., Zarei, M.S., Hajmohammad, M.H., Nouri, A.: Wave propagation of embedded viscoelastic FG-CNT-reinforced sandwich plates integrated with sensor and actuator based on refined zigzag theory. Int. J. Mech. Sci. 130, 534–545 (2017)

    Article  Google Scholar 

  8. Anjanappa, M., Bi, J.: Modelling, design and control of embedded Terfenol-D actuator. Smart Struct. Intel. Sys. 908–918, 1993 (1917)

    Google Scholar 

  9. Anjanappa, M., Bi, J.: A theoretical and experimental study of magnetostrictive mini actuators. Smart Mater. Struct. 1, 83–91 (1994)

    Article  Google Scholar 

  10. Reddy, J.N.: Mechanics of laminated composite plates: Theory and analysis, Boca Raton. CRC Press, FL (1997)

    Google Scholar 

  11. Hiller, M.W., Bryant, M.D., Umegaki, J.: Attenuation and transformation of vibration through active control of magnetostrictive Terfenol. J. Sound Vib. 134, 507–519 (1989)

    Article  Google Scholar 

  12. Reddy, J.N., Barbosa, J.I.: On vibration suppression of magnetostrictive beams. Smart Mater. Struct. 9, 49–58 (2000)

    Article  Google Scholar 

  13. Pradhan, S.C., Ng, T.Y., Lam, K.Y., Reddy, J.N.: Control of laminated composite plates using magnetostrictive layers. Smart Mater. Struct. 10, 657–667 (2001)

    Article  CAS  Google Scholar 

  14. Zhang, Y., Zhou, H., Zhou, Y.: Vibration suppression of cantilever laminated composite plate with nonlinear giant magnetostrictive material layers. Acta Mech. Solida Sin. 28, 50–60 (2015)

    Article  Google Scholar 

  15. Subramanian, P.: Vibration suppression of symmetric laminated composite beams. Smart Mater. Struct. 11(6), 880–885 (2002)

    Article  Google Scholar 

  16. Bhattacharya, B., Vidyashankar, B.R., Patsias, S., Tomlinson, G.R.: Active and passive vibration control of flexible structures using a combination of magnetostrictive and ferro-magnetic alloys. Proc. SPIE, Smart Struct. Mater. 4073, 204–214 (2000)

  17. Kumar, J.S., Ganesan, N., Swarnamani, S., Padmanabhan, C.: Active control of beam with magnetostrictive layer. Comput. Struct. 81(13), 1375–1382 (2003)

    Article  Google Scholar 

  18. Ghosh, D.P., Gopalakrishnan, S.: Coupled analysis of composite laminate with embedded magnetostrictive patches. Smart Mater. Struct. 14(6), 1462–1473 (2005)

    Article  Google Scholar 

  19. Zhou, H.M., Zhou, Y.H.: Vibration suppression of laminated composite beams using actuators of giant magnetostrictive materials. Smart Mater. Struct. 16(1), 198–206 (2007)

    Article  Google Scholar 

  20. Murty, A.V.K., Anjanappa, M., Wu, Y.-F.: The use of magnetostrictive particle actuators for vibration attenuation of flexible beams. J. Sound Vib. 206(2), 133–149 (1997)

    Article  Google Scholar 

  21. Kumar, J.S., Ganesan, N., Swarnamani, S., Padmanabhan, C.: Active control of simply supported plates with a magnetostrictive layer. Smart Mater. Struct. 13(3), 487–492 (2004)

    Article  Google Scholar 

  22. Suman, S.D., Hirwani, C.K.A.: Chaturvedi, S. K. Panda, Effect of magnetostrictive material layer on the stress and deformation behaviour of laminated structure. IOP Conf. Ser.: Mater. Sci. Eng. 178, 012026 (2017)

  23. Reddy, J.N.: On laminated composite plates with integrated sensors and actuators. Eng. Struct. 21(7), 568–593 (1999)

    Article  Google Scholar 

  24. Koconis, D.B., Kollar, L.P., Springer, G.S.: Shape control of composite plates and shells with embedded actuators I: voltage specified. J. Compos. Mater. 28, 415–458 (1994)

    Article  CAS  Google Scholar 

  25. Lee, S.J., Reddy, J.N., Rostamabadi, F.: Transient analysis of laminated composite plates with embedded smart-material layers. Fin. Elem. Anal. Des. 40, 463–483 (2004)

    Article  Google Scholar 

  26. Zenkour, A.M., El-Shahrany, H.D.: Vibration suppression analysis for laminated composite beams contain actuating magnetostrictive layers. J. Computat. Appl. Mech. 50(1), 69–75 (2019)

    Google Scholar 

  27. Zenkour, A.M., El-Shahrany, H.D.: Control of a laminated composite plate resting on Pasternak’s foundations using magnetostrictive layers. Arch. Appl. Mech. 90, 1943–1959 (2020)

    Article  Google Scholar 

  28. Zenkour, A.M., El-Shahrany, H.D.: Hygrothermal vibration of adaptive composite magnetostrictive laminates supported by elastic substrate medium. Eur. J. Mech. A/Solids. 85, 104140 (2021)

  29. Santapuri, S., Scheidler, J.J., Dapino, M.J.: Two-dimensional dynamic model for composite laminates with embedded magnetostrictive materials. Compos. Struct. 132, 737–745 (2015)

    Article  Google Scholar 

  30. Anjanappa, M., Bi, J.: Magnetostrictive mini actuators for smart structural application. Smart Mater. Struct. 3, 383–390 (1994)

    Article  Google Scholar 

  31. Pradhan, S.C.: Vibration suppression of FGM shells using embedded magnetostrictive layers. Int. J. Solids Struct. 42, 2465–2488 (2005)

    Article  Google Scholar 

  32. Shankar, G., Kumar, S.K., Mahato, P.K.: Vibration analysis and control of smart composite plates with delamination and under hygrothermal environment. Thin-Walled Struct. 116, 53–68 (2017)

    Article  Google Scholar 

  33. Hong, C.C.: Transient responses of magnetostrictive plates without shear effects. Int. J. Eng. Sci. 47(3), 355–362 (2009)

    Article  CAS  Google Scholar 

  34. Hong, C.C.: Transient responses of magnetostrictive plates by using the GDQ method. Eur. J. Mech. A/Solids. 29(6), 1015–1021 (2010)

  35. Xiao, Y., Gou, X.-F., Zhang, D.-G.: A one-dimension nonlinear hysteretic constitutive model with elasto-thermo-magnetic coupling for giant magnetostrictive materials. J. Magnetism Magnetic Mater. 441, 642–649 (2017)

    Article  CAS  Google Scholar 

  36. Zenkour, A.M., Sobhy, M.: Nonlocal piezo-hygrothermal analysis for vibration characteristics of a piezoelectric Kelvin-Voigt viscoelastic nanoplate embedded in a viscoelastic medium. Acta Mech. 229(1), 3–19 (2018)

    Article  Google Scholar 

  37. Zenkour, A.M.: Bending analysis of piezoelectric exponentially graded fiber reinforced composite cylinders in hygrothermal environments. Int. J. Mech. Mater. Design 13(4), 515–529 (2017)

    Article  CAS  Google Scholar 

  38. Arefi, M., Zenkour, A.M.: Employing sinusoidal shear deformation plate theory for transient analysis of three layers sandwich nanoplate integrated with piezo-magnetic face-sheets. Smart Mater. Struct. 25, 115040 (2016)

  39. Zenkour, A.M., El-Shahrany, H.D.: Hygrothermal effect on vibration of magnetostrictive viscoelastic sandwich plates supported by Pasternak’s foundations. Thin-Walled Struct. 157, 107007 (2020)

Download references

Acknowledgements

Not Applicable.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Conception or design of the work – Dr. H. D. El-Shahrany, Prof. A. M. Zenkour.

Data collection – Dr. H. D. El-Shahrany.

Data analysis and interpretation – Prof. A. M. Zenkour.

Drafting the article – Dr. H. D. El-Shahrany.

Critical revision of the article – Prof. A. M. Zenkour.

Corresponding author

Correspondence to Ashraf M. Zenkour.

Ethics declarations

Ethical Approval

The authors disclose that this manuscript is not submitted to any other journal and is an unpublished work.

Consent to Participate

Not applicable.

Consent for Publication

As a corresponding author, I give my consent for the publication of identifiable details within the text to be published in the above Journal and Article.

Conflict of Interests

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The coefficients \({\overline{Q} }_{ij}^{\left(r\right)}\), \({\overline{q} }_{ij}\), \({\stackrel{\sim }{\alpha }}_{l}\) and \({\stackrel{\sim }{\beta }}_{l}\), \(l=xx,yy, xy\) appeared in Eq. (7) and Eq. (9) are described as.

$${\overline{Q} }_{11}^{\left(r\right)}={Q}_{11}^{\left(r\right)}{{\mathrm{cos}}^{4}\theta }^{\left(r\right)}+2\left({Q}_{12}^{\left(r\right)}{+2Q}_{66}^{\left(r\right)}\right){{\mathrm{cos}}^{2}\theta }^{\left(r\right)}{{\mathrm{sin}}^{2}\theta }^{\left(r\right)}+{Q}_{22}^{\left(r\right)}{{\mathrm{sin}}^{4}\theta }^{\left(r\right)},$$
$${\overline{Q} }_{12}^{\left(r\right)}=\left({Q}_{11}^{\left(r\right)}+{Q}_{22}^{\left(r\right)}-{4Q}_{66}^{\left(r\right)}\right){{\mathrm{cos}}^{2}\theta }^{\left(r\right)}{{\mathrm{sin}}^{2}\theta }^{\left(r\right)}+{Q}_{12}^{\left(r\right)}\left({{\mathrm{sin}}^{4}\theta }^{\left(r\right)}+{{\mathrm{cos}}^{4}\theta }^{\left(r\right)}\right),$$
$${\overline{Q} }_{22}^{\left(r\right)}={Q}_{11}^{\left(r\right)}{{\mathrm{sin}}^{4}\theta }^{\left(r\right)}+2\left({Q}_{12}^{\left(r\right)}{+2Q}_{66}^{\left(r\right)}\right){{\mathrm{cos}}^{2}\theta }^{\left(r\right)}{{\mathrm{sin}}^{2}\theta }^{\left(r\right)}+{Q}_{22}^{\left(r\right)}{{\mathrm{cos}}^{4}\theta }^{\left(r\right)},$$
$${\overline{Q} }_{44}^{\left(r\right)}={Q}_{44}^{\left(r\right)}{{\mathrm{cos}}^{2}\theta }^{\left(r\right)}+{Q}_{55}^{\left(r\right)}{{\mathrm{sin}}^{2}\theta }^{\left(r\right)},$$
$${\overline{Q} }_{55}^{\left(r\right)}={Q}_{55}^{\left(r\right)}{{\mathrm{cos}}^{2}\theta }^{\left(r\right)}+{Q}_{44}^{\left(r\right)}{{\mathrm{sin}}^{2}\theta }^{\left(r\right)},$$
$${\overline{Q} }_{66}^{\left(r\right)}={\left({Q}_{11}^{\left(r\right)}+{Q}_{22}^{\left(r\right)}-{2Q}_{12}^{\left(r\right)}-{2Q}_{66}^{\left(r\right)}\right){{\mathrm{sin}}^{2}\theta }^{\left(r\right)}{{\mathrm{cos}}^{2}\theta }^{\left(r\right)}+Q}_{66}^{\left(r\right)}\left({{\mathrm{sin}}^{4}\theta }^{\left(r\right)}+{{\mathrm{cos}}^{4}\theta }^{\left(r\right)}\right),$$
$${Q}_{11}^{\left(r\right)}=\frac{{E}_{1}\left(1-{\upnu }_{23}^{\left(r\right)}{\upnu }_{32}^{\left(r\right)}\right)}{\Delta },$$
$${Q}_{12}^{\left(r\right)}=\frac{{E}_{1}\left({\upnu }_{21}^{\left(r\right)}+{\upnu }_{31}^{\left(r\right)}{\upnu }_{23}^{\left(r\right)}\right)}{\Delta },$$
$${Q}_{22}^{\left(r\right)}=\frac{{E}_{2}\left(1-{\upnu }_{13}^{\left(r\right)}{\upnu }_{31}^{\left(r\right)}\right)}{\Delta },$$
$${Q}_{44}^{\left(r\right)}={G}_{23}^{\left(r\right)},\;\; {Q}_{55}^{\left(r\right)}={G}_{13}^{\left(r\right)},\;\; {Q}_{66}^{\left(r\right)}={G}_{12}^{\left(r\right)},$$
$$\Delta =1- {\upnu }_{21}^{\left(r\right)}{\upnu }_{12}^{\left(r\right)}-{\upnu }_{23}^{\left(r\right)}{\upnu }_{32}^{\left(r\right)}-{\upnu }_{13}^{\left(r\right)}{\upnu }_{31}^{\left(r\right)} -2{\upnu }_{21}^{\left(r\right)}{\upnu }_{13}^{\left(r\right)}{\upnu }_{32}^{\left(r\right)},$$
$${\upnu }_{21}^{\left(r\right)}=\frac{{\upnu }_{12}^{\left(r\right)}{E}_{2-}^{\left(r\right)}}{{E}_{1}^{\left(r\right)}},\;\; {\upnu }_{31}^{\left(r\right)}=\frac{{\upnu }_{13}^{\left(r\right)}{E}_{3}^{\left(r\right)}}{{E}_{1}^{\left(r\right)}},\;\; {\upnu }_{32}^{\left(r\right)}=\frac{{\upnu }_{23}^{\left(r\right)}{E}_{3}^{\left(r\right)}}{{E}_{2}^{\left(r\right)}},$$
$${\stackrel{\sim }{\alpha }}_{xx}={\alpha }_{xx}{\mathrm{cos}}^{2}\theta +{\alpha }_{yy}{\mathrm{sin}}^{2}\theta ,$$
$${\stackrel{\sim }{\alpha }}_{yy}={\alpha }_{yy}{\mathrm{cos}}^{2}\theta +{\alpha }_{xx}{\mathrm{sin}}^{2}\theta ,$$
$${\stackrel{\sim }{\alpha }}_{xy}=\left({\alpha }_{xx}-{\alpha }_{yy}\right)\mathrm{sin}\theta \; \mathrm{cos}\theta ,$$
$${\stackrel{\sim }{\beta }}_{xx}={\beta }_{xx}{\mathrm{cos}}^{2}\theta +{\beta }_{yy}{\mathrm{sin}}^{2}\theta ,$$
$${\stackrel{\sim }{\beta }}_{yy}={\beta }_{yy}{\mathrm{cos}}^{2}\theta +{\beta }_{xx}{\mathrm{sin}}^{2}\theta ,$$
$${\stackrel{\sim }{\beta }}_{xy}=\left({\beta }_{xx}-{\beta }_{yy}\right)\mathrm{sin}\theta \; \mathrm{cos}\theta ,$$
$${\overline{q} }_{31}={q}_{31}{\mathrm{cos}}^{2}\theta +{q}_{32}{\mathrm{sin}}^{2}\theta ,$$
$${\overline{q} }_{32}={q}_{32}{\mathrm{cos}}^{2}\theta +{q}_{31}{\mathrm{sin}}^{2}\theta ,$$
$${\overline{q} }_{14}=\left({q}_{15}-{q}_{24}\right)\mathrm{sin}\theta \; \mathrm{cos}\theta ,$$
$${\overline{q} }_{24}={q}_{24}{\mathrm{cos}}^{2}\theta +{q}_{15}{\mathrm{sin}}^{2}\theta ,$$
$${\overline{q} }_{15}={q}_{15}{\mathrm{cos}}^{2}\theta +{q}_{24}{\mathrm{sin}}^{2}\theta ,$$
$${\overline{q} }_{25}=\left({q}_{15}-{q}_{24}\right)\mathrm{sin}\theta \; \mathrm{cos}\theta ,$$
$${\overline{q} }_{36}=\left({q}_{31}-{q}_{32}\right)\mathrm{sin}\theta \; \mathrm{cos}\theta ,$$

in which \({E}_{i}\), \({v}_{ij}\), \({G}_{ij}\), \({\alpha }_{ij}\) and \({\beta }_{ij}\) are Young’s moduli, Poisson’s ratios, shear moduli, the thermal and hygroscopic expansion coefficients, respectively. Besides, the coefficients \({q}_{ij}\) are the magnetostrictive modules.

Appendix B

The coefficients \({\widehat{S}}_{ij},{\widehat{M}}_{ij}\) and \({\widehat{C}}_{ij}\) (\(i=1, 2, 3\)) appeared in Eq. (35) are obtained as the following.

$${\widehat{S}}_{11}={D}_{11}{\left(\frac{n\pi }{a}\right)}^{4}+{D}_{22}{\left(\frac{m\pi }{b}\right)}^{4}+\left(2{D}_{12}+4{D}_{66}\right){\left(\frac{n\pi }{a}\right)}^{2}{\left(\frac{m\pi }{b}\right)}^{2}+\left({K}_{P}+{F}_{x}\right){\left(\frac{n\pi }{a}\right)}^{2}$$
$$+\left({K}_{P}+{F}_{y}\right){\left(\frac{m\pi }{b}\right)}^{2}+{K}_{W},$$
$${\widehat{S}}_{12}=-\frac{n\pi }{a}\left[{E}_{11}^{1}{\left(\frac{n\pi }{a}\right)}^{2}+\left({E}_{21}^{1}+2{E}_{66}^{1}\right){\left(\frac{m\pi }{b}\right)}^{2}\right],$$
$${\widehat{S}}_{13}=-\frac{m\pi }{b}\left[{E}_{22}^{1}{\left(\frac{m\pi }{b}\right)}^{2}+\left({E}_{12}^{1}+2{E}_{66}^{1}\right){\left(\frac{n\pi }{a}\right)}^{2}\right],$$
$${\widehat{S}}_{22}={E}_{11}^{3}{\left(\frac{n\pi }{a}\right)}^{2}+{E}_{66}^{3}{\left(\frac{m\pi }{b}\right)}^{2}+{E}_{55}^{3},$$
$${\widehat{S}}_{23}={\widehat{S}}_{23}=\left({E}_{12}^{3}+{E}_{66}^{3}\right)\frac{n\pi }{a}\frac{m\pi }{b},$$
$${\widehat{S}}_{33}={E}_{66}^{2}{\left(\frac{n\pi }{a}\right)}^{2}+{E}_{22}^{3}{\left(\frac{m\pi }{b}\right)}^{2}+{E}_{44}^{3},$$
$${\widehat{M}}_{11}=-{\beta }_{31}{\left(\frac{n\pi }{a}\right)}^{2}-{\beta }_{32}{\left(\frac{m\pi }{b}\right)}^{2}, \;\;\; {\widehat{M}}_{21}={\gamma }_{31}\frac{n\pi }{a}, \;\;\; {\widehat{M}}_{31}={\gamma }_{32}\frac{m\pi }{b},$$
$${\widehat{M}}_{12}={\widehat{M}}_{13}={\widehat{M}}_{22}={\widehat{M}}_{23}={\widehat{M}}_{32}={\widehat{M}}_{33}=0,$$
$${\widehat{C}}_{11}={I}_{2}\left[{\left(\frac{n\pi }{a}\right)}^{2}+{\left(\frac{m\pi }{b}\right)}^{2}\right]+{I}_{0}, \;\;\; {\widehat{C}}_{12}=-{I}_{e}\frac{n\pi }{a}, \;\;\; {\widehat{C}}_{13}=-{I}_{e}\frac{m\pi }{b},$$
$${\widehat{C}}_{22}={I}_{e}^{2}, \;\;\; {\widehat{C}}_{23}=0, \;\;\; {\widehat{C}}_{33}={I}_{e}^{2}.$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zenkour, A.M., El-Shahrany, H.D. Hygrothermal Vibration and Damping Behavior of Magnetostrictive Sandwich Plate Resting On Pasternak’s Foundations. Appl Compos Mater 29, 803–828 (2022). https://doi.org/10.1007/s10443-021-09970-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-021-09970-3

Keywords

Navigation