Skip to main content

Advertisement

Log in

Material Based Structure Design: Numerical Analysis Thermodynamic Response of Thermal Pyrolytic Graphite /Al Sandwich Composites

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

Amine-grafted multiwalled carbon nanotubes (MWCNTs) based thermally conductive adhesive (TCA) was studied in the previous paper and applied here in thermal pyrolytic graphite (TPG)/Al radiator due to its high thermal conductivity, toughness and cohesiveness. In this paper, in an attempt to confirm the application of TCA to TPG/Al sandwich radiator, the thermodynamic response in TPG/Al sandwich composites associated with key material properties and structural design was investigated using finite element simulation with commercial available ANSYS software. The induced thermal stress in TCA layer is substantial due to the thermal expansion mismatch between Al plate and TPG. The maximum thermal stress is located near the edge of TCA layer with the von Mises stress value of 4.02 MPa and the shear stress value of 1.66 MPa. The reasonable adjustment of physical-mechanical properties including thermal conductivity, thermal expansion, Young,s modulus and the thickness of TCA layer, Al plate and TPG are beneficial for reducing the temperature of the top surface of the upper skin and their effects on the reduction of thermal structural response in some ways. These findings will highlight the structural optimization of TPG/Al radiator for future application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sayyad A.S., Ghugal Y.M.: On the free vibration analysis of laminated composite and sandwich plates: a review of recent literature with some numerical results. Compos. Struct. 129, 177–201 (2015)

    Article  Google Scholar 

  2. Vaidya U.K., Nelson S., Sinn B., Mathew B.: Processing and high strain rate impact response of multi-functional sandwich composites. Compos. Struct. 52(3), 429–440 (2001)

    Article  Google Scholar 

  3. Ortona A., D'angelo C., Bianchi G.: Monitoring sandwich structured SiC ceramics integrity with electrical resistance. Ndt E Int. 46(3), 77–82 (2012)

    Article  Google Scholar 

  4. Li Z.Q., Song W.D., Tang H.P., Wang Z.H., Zhao L.M.: Thermal-mechanical behavior of sandwich panels with closed-cell foam core under intensive laser irradiation. Therm. Sci. 18(5), 1607–1611 (2014)

    Article  Google Scholar 

  5. Silva J.M., Gamboa P., Nunes C.Z., Franco N.: Damage tolerant Cork based composites for aerospace applications. Aeronaut. J. 115(115), 567–575 (2011)

    Article  Google Scholar 

  6. Crupi V., Kara E., Epasto G., Guglielmino E., Aykul H.: Prediction model for the impact response of glass fibre reinforced aluminium foam sandwiches. Int. J. Impact Eng. 77(1), 97–107 (2015)

    Article  Google Scholar 

  7. Wang J.X., Yan S.L., Bao R., Yang K.L., Feng Z.J.: Facile fabrication of multi-walled carbon nanotubes and its enhancement on thermally conductive adhesive applied in heat dissipation devices. Mater. Design. 51, 598–604 (2013)

    Article  Google Scholar 

  8. Wang J.X., Yan S.L., Xie B.P., Bao R., He Y.B.: Dynamic analysis and mechanical behavior of thermally conductive adhesive reinforced with amine-grafted multiwalled carbon nanotubes. Polym.Compos. 35, 964–968 (2013)

    Article  Google Scholar 

  9. Wang J.X., Yan S.L., He Y.B., Xie B.P., Yan F.: Morphology and cure behavior of Multi-walled Carbon Nanotubes-based thermally conductive adhesive. J.Wuhan Univ. Technol. 29(3), 451–454 (2014)

    Article  Google Scholar 

  10. Yao D., Kim B.: Developing rapid heating and cooling systems using pyrolytic graphite. Appl.Therm.Eng. 23(3), 341–352 (2003)

    Article  Google Scholar 

  11. Zhang S., Vinson M., Beshenich P., Montesano M.: Evaluation and finite element modeling for new type of thermal material annealed pyrolytic graphite (APG). Thermochim.Acta. 442(1), 6–9 (2006)

    Article  Google Scholar 

  12. Kuzubov A.A., Krasnov P.O., Ignatova N.Y., Fedorov A.S., Tomilin F.N.: Thermodynamic stability and electron structure of polymeric sandwich complexes of porphyrins with different metals. Russ.J.Phys.Chem. 86(86), 1567–1569 (2012)

    Article  Google Scholar 

  13. Ai S., Mao Y., Pei Y., Fang D., Tang L.: Effect of stitch on thermodynamic properties of sandwiched thermal protection structures. Compos.Struct. 99(5), 41–47 (2013)

    Article  Google Scholar 

  14. Ai S., Mao Y., Pei Y., Fang D., Tang L.: Numerical analysis of thermodynamic behaviour of through-thickness stitched sandwich laminate. Appl.Compos.Mater. 20(6), 1161–1171 (2013)

    Article  Google Scholar 

  15. Li C.S., Yu H.L., Deng G.Y., Liu X.H., Wang G.D.: Numerical simulation of temperature field and thermal stress field of work roll during hot strip rolling. J. Iron Steel Res. Int. 14(5), 18–21 (2007)

    Article  Google Scholar 

  16. Woo S.C., Goo N.S.: Prediction of actuating displacement in a piezoelectric composite actuator with a thin sandwiched PZT plate by a finite element simulation. J. Mech. Sci. Technol. 21(3), 455–464 (2007)

    Article  Google Scholar 

  17. Dai K., Shaw L.: Thermal and mechanical finite element modeling of laser forming from metal and ceramic powders. Acta Mater. 52(1), 69–80 (2004)

    Article  Google Scholar 

  18. Liu H.B., Tao J., Gautreau Y., Zhang P.Z., Xu J.: Simulation of thermal stresses in SiC–Al2O3 composite tritium penetration barrier by finite-element analysis. Mater. Des. 30(8), 2785–2790 (2009)

    Article  Google Scholar 

  19. Heusch C.A., Moser H.G., Kholodenko A.: Direct measurements of the thermal conductivity of various pyrolytic graphite samples (PG,TPG) used as thermal dissipation agents in detector applications. Nucl. Instrum. Methods Phys. Res. 480(2–3), 463–469 (2002)

    Article  Google Scholar 

  20. Bailey A.C., Yates B.: Anisotropic thermal expansion of pyrolytic graphite at low temperatures. J. Appl. Phys. 41(13), 5088–5091 (1970)

    Article  Google Scholar 

  21. Entwisle M.F.: Thermal expansion of pyrolytic graphite. Phys.Lett. 2(5), 236–238 (1962)

    Article  Google Scholar 

  22. Hishiyama Y., Kishi A.: Thermal expansion coefficient of pyrolytic graphite and kish graphite. Carbon. 22(2), 228–228 (1984)

    Article  Google Scholar 

  23. Wang Y., Ji F.L., Gao S.S.: Finite element analysis of thermal stress for different Cu interconnects structure. Microelectron. Reliab. 52(11), 2856–2860 (2012)

    Article  Google Scholar 

  24. Aalami-aleagha M., Foroutan M., Feli S., Nikabadi S.: Analysis preheat effect on thermal cycle and residual stress in a welded connection by FE simulation. Int. J. Press. Vessel. Pip. 114, 69–75 (2014)

    Article  Google Scholar 

  25. Wang L., Wang Y., Zhang W., Sun X., He J.Q., Pan Z.Y., Wang C.H.: Finite element simulation of stress distribution and development in 8YSZ and double-ceramic-layer La2 Zr2O7/8YSZ thermal barrier coatings during thermal shock. Appl.Surf.Sci. 258(8), 3540–3551 (2012)

    Article  Google Scholar 

  26. Chawla V., Jayaganthan R., Ramesh C.: Finite element analysis of thermal stress in magnetron sputtered Ti coating. J. Mater. Process. Technol. 200(1), 205–211 (2008)

    Article  Google Scholar 

  27. Mao S., Cheng C., Li X., Michaelides E.E.: Thermal/structural analysis of radiators for heavy-duty trucks. Appl. Therm. Eng. 30(11), 1438–1446 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Natural Science Foundation of Guangdong Province (2015 A030310501),Open Fund of Jiangsu Key Laboratory of Materials and Technology for Energy Conversion (MTEC-2015 M01) and Natural Science Foundation of Guangdong Province (2015 A030310501).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junxia Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Yan, S. & Yu, D. Material Based Structure Design: Numerical Analysis Thermodynamic Response of Thermal Pyrolytic Graphite /Al Sandwich Composites. Appl Compos Mater 23, 1167–1176 (2016). https://doi.org/10.1007/s10443-016-9506-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-016-9506-3

Keywords

Navigation