Skip to main content
Log in

Numerical Analysis of Thermodynamic Behaviour of Through-Thickness Stitched Sandwich Laminate

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

Effects of stitching angle on mechanical properties, thermal protection capability and induced thermal stress of stitched sandwich laminate (SSL) are numerically analyzed by ABAQUS codes. Interest centers on the potential for microcracking in the vicinity of the through-thickness stitches and the skins/foam interfaces. Two numerical models, in-depth heat transfer and thermoelastic deformation, are coupled to yield the transient response of the SSL. Six different stitching angles are considered and the simulation results showed that: the heat conductivity ability of the SSL is improved as the stitching angle increasing, which alters the mechanical behaviour and the thermal stress state of the SSL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Lee, H.H.: Evaluation of thermal stresses at the interface of a stitch in a stitched laminate. J. Reinf. Plast. Compos. 15(10), 972–987 (1996)

    CAS  Google Scholar 

  2. Raju, K.S., Tomblin, J.S.: Energy absorption characteristics of stitched composite sandwich panels. J. Compos. Mater. 33(8), 712–728 (1999)

    Article  CAS  Google Scholar 

  3. Molnár, P., Ogale, R.L., Mitschang, P.: Influence of drapability by using stitching technology to reduce fabric deformation and shear during thermoforming. Compos. Sci. Technol. 67(15–16), 3386–3393 (2007)

    Article  Google Scholar 

  4. Lomov, S.V., Verpoest, I.: Model of shear of woven fabric and parametric description of shear resistance of glass woven reinforcements. Compos. Sci. Technol. 66(7–8), 919–933 (2006)

    Article  Google Scholar 

  5. Li, X., Li, G.Y., Wang, C.H., You, M.: Optimum design of composite sandwich structures subjected to combined torsion and bending loads. Appl. Compos. Mater. 19, 315–331 (2012)

    Article  Google Scholar 

  6. Mouritz, A.P.: Flexural properties of stitched GRP laminates. Compos. Part A-Appl S. 27(7), 525–530 (1996)

    Article  Google Scholar 

  7. Ai, S.G., Mao, Y.Q., Pei, Y.M., Fang, D.N., Tang, L.Q.: Effect of stitch on thermodynamic properties of sandwiched thermal protection structures. Compos. Struct. 99, 41–47 (2013)

    Article  Google Scholar 

  8. Lee, G.W., Choi, J.S., Lee, S.S., Park, M., Kim, J.: Mechanical properties and failure mechanism of the polymer composite with 3-dimensionally stitched woven fabric. Macromol. Res. 11(2), 98–103 (2003)

    Article  CAS  Google Scholar 

  9. Cunnington, G.R., Zierman, C.A.: Performance of multi-layer insulation systems for temperatures to 700K. NASA CR2907, 1967210 (1967)

  10. Lascoup, B., Aboura, Z., Khellil, K., Benzeggagh, M.: On the mechanical effect of stitch addition in sandwich panel. Compos. Sci. Technol. 66(10), 1385–1398 (2006)

    Article  Google Scholar 

  11. Lascoup, B., Aboura, Z., Khellil, K., Benzeggagh, M.: Stitched sandwich panel materials for resin infusion structures. SAMPE J. 41(1), 42–48 (2005)

    Google Scholar 

  12. Kim, J.H., Lee, Y.S., Park, B.J., Kim, D.H.: Evaluation of durability and strength of stitched foam-cored sandwich structures. Compos. Struct. 47(1–4), 543–555 (1999)

    Article  Google Scholar 

  13. Lascoup, B., Aboura, Z., Khellil, K., Benzeggagh, M.: Homogenization of the core layer in stitched sandwich structures. Compos. Sci. Technol. 70(2), 350–355 (2010)

    Article  Google Scholar 

  14. Lascoup, B., Aboura, Z., Khellil, K., Benzeggagh, M.: Impact response of three-dimensional stitched sandwich composite. Compos. Struct. 92(2), 347–353 (2010)

    Article  Google Scholar 

  15. Rong, M.Z., Zhang, M.Q., Liu, Y., Zhang, Z.W., Yang, G.C., Zeng, H.M.: Effect of stitching on in-plane and interlaminar properties of sisal/epoxy laminates. J. Compos. Mater. 36(12), 1505–1526 (2002)

    Article  CAS  Google Scholar 

  16. Suh, S.S., Han, N.L., Yang, J.M., Hahn, H.T.: Compression behavior of stitched stiffened panel with a clearly visible stiffener impact damage. Compos. Struct. 62(2), 213–221 (2003)

    Article  Google Scholar 

  17. Han, N.L., Suh, S.S., Yang, J.M., Hahn, H.T.: Resin film infusion of stitched stiffened composite panels. Compos. Part. A-Appl. S. 34(3), 227–236 (2003)

    Article  Google Scholar 

  18. Aaron, H., Amin, S.K., Mohammad, M., Reza, N.J.: Temperature effects on the impact behavior of fiberglass and fiberglass/kevlar sandwich composites. Appl. Compos. Mater. 13, 369–383 (2006)

    Article  Google Scholar 

  19. Dawn, C.J.: Improving strength of postbuckled panels through stitching. Compos. Struct. 80(2), 298–306 (2007)

    Article  Google Scholar 

  20. Srinivasan, A.T., Alexander, E.B., Arun, S.: Shock loading response of sandwich panels with 3-D woven E-glass composite skins and stitched foam core. Compos. Sci. Technol. 69(6), 736–753 (2009)

    Article  Google Scholar 

  21. Steeves, C.A., Evans, A.G.: Optimization of thermal protection systems utilizing sandwich structures with low coefficient of thermal expansion lattice hot faces. J. Am. Ceram. Soc. 94, 55–61 (2011)

    Article  Google Scholar 

  22. Nurashikin, S., Hazizan, A.: Preparation and properties of thermoplastic honeycomb core sandwich structure with aluminum skin. J. Compos. Mater. 46(2), 183–191 (2011)

    Article  Google Scholar 

  23. Leonenko, D.V., Starovoitov, E.I.: Thermal impact on a circular sandwich plateon an elastic foundation. Mech. Solids. 47(1), 111–118 (2012)

    Article  Google Scholar 

  24. Fan, C.L., Sun, F.R., Yang, L.: A numerical method for determining thermal conductivity distribution of the interlayer of a sandwich plate based on thermographic temperature measurement. Phys D-Appl P. 41, 1–9 (2008)

    CAS  Google Scholar 

  25. Marrey, R.V.: Finite element micromechanical models for predicting stiffness and strength of textile composite materials. Ph.D. Thesis, Florida, University of Florida, (1995)

  26. Fang, G.D., Liang, J., Wang, B.L.: Progressive damage and nonlinear analysis of 3D four-directional braided composites under unidirectional tension. Compos. Struct. 89(1), 126–133 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from the National Natural Science Foundations of China (No. 90916026, 11202007) and the National Basic Research Program (973) of China (No. 2011CB606105) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ai Shigang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shigang, A., Yiqi, M., Yongmao, P. et al. Numerical Analysis of Thermodynamic Behaviour of Through-Thickness Stitched Sandwich Laminate. Appl Compos Mater 20, 1161–1171 (2013). https://doi.org/10.1007/s10443-013-9327-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-013-9327-6

Keywords

Navigation