Skip to main content

Advertisement

Log in

Effect of Compaction and Preforming Parameters on the Compaction Behavior of Bindered Textile Preforms for Automated Composite Manufacturing

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

The effect of compaction and preforming parameters on the Fiber Volume Fraction (FVF) and the Residual Preform Thickness (RPT) of bindered textile preforms during a compaction experiment was investigated by using Taguchi method. Four compaction and preforming parameters of compaction temperature (A), binder activation temperature (B), binder content (C) and binder activation time (D) were selected and optimized with respect to the FVF at specified compaction pressure (0.2 MPa) and the RPT after compaction. The results reveal that the compaction behavior of bindered textile preforms has been significantly influenced due to the presence of preforming binder. From all the selected experiment parameters the compaction temperature is the most influential factors on the FVF and RPT. The significant sequence of the parameters for the resulting FVF can be concluded as ABDC, which represents compaction temperature, binder activation temperature, binder activation time and binder content respectively, while this sequence is changed as ADCB as far as the RPT is concerned. The FVF during compaction and RPT during release were correlated with the compaction and preforming parameters using a modified four-parameter-compaction-model which has been proposed for describing the compaction behavior of bindered textile preforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Aranda, S., Klunker, F., Ziegmann, G.: Compaction response of fiber reinforcements depending on processing temperature. In: Proceedings of ICCM17, Edinburgh (2009)

  2. Hammami, A.: Effect of reinforcement structure on compaction behavior in the vacuum infusion process. Polym. Compos. 22(3), 337–348 (2001). doi:10.1002/pc.10542

    Article  CAS  Google Scholar 

  3. Kelly, P.A., Umer, R., Bickerton, S.: Viscoelastic response of dry and wet fibrous materials during infusion processes. Compos. A: Appl. Sci. Manuf. 37(6), 868–873 (2006). doi:10.1016/j.compositesa.2005.02.008

    Article  Google Scholar 

  4. Robitaille, F., Gauvin, R.: Compaction of textile reinforcements for composites manufacturing. I: review of experimental results. Polym. Compos. 19(2), 198–216 (1998). doi:10.1002/pc.10091

    Article  CAS  Google Scholar 

  5. Robitaille, F., Gauvin, R.: Compaction of textile reinforcements for composites manufacturing. II: compaction and relaxation of dry and H2O-saturated woven reinforcements. Polym. Compos. 19(5), 543–557 (1998). doi:10.1002/pc.10128

    Article  CAS  Google Scholar 

  6. Robitaille, F., Gauvin, R.: Compaction of textile reinforcements for composites manufacturing. III. Reorganization of the fiber network. Polym. Compos. 20(1), 48–61 (1999). doi:10.1002/pc.10334

    Article  CAS  Google Scholar 

  7. Batch, G.L., Cumiskey, S., Macosko, C.W.: Compaction of fiber reinforcements. Polym. Compos. 23(3), 307–318 (2002). doi:10.1002/pc.10433

    Article  CAS  Google Scholar 

  8. Chen, B.X., Chou, T.W.: Compaction of woven-fabric preforms in liquid composite molding processes: single-layer deformation. Compos. Sci. Technol. 59(10), 1519–1526 (1999). doi:10.1016/s0266-3538(99)00002-0

    Article  Google Scholar 

  9. Kim, Y.R., McCarthy, S.P., Fanucci, J.P.: Compressibility and relaxation of fiber reinforcements during composite processing. Polym. Compos. 12(1), 13–19 (1991). doi:10.1002/pc.750120104

    Article  Google Scholar 

  10. Kruckenburg, T., Parton, R.: Compaction of dry and lubricated reinforcements. In: Proceedings FPCM-7, Delaware (2004)

  11. Pearce, N., Summerscales, J.: The compressibility of a reinforcement fabric. Compos. Manuf. 6(1), 15–21 (1995). doi:10.1016/0956-7143(95)93709-s

    Article  CAS  Google Scholar 

  12. Saunders, R.A., Lekakou, C., Bader, M.G.: Compression in the processing of polymer composites 1. A mechanical and microstructural study for different glass fabrics and resins. Compos. Sci. Technol. 59(7), 983–993 (1999). doi:10.1016/s0266-3538(98)00137-7

    Article  CAS  Google Scholar 

  13. Luo, Y.W., Verpoest, I.: Compressibility and relaxation of a new sandwich textile preform for liquid composite molding. Polym. Compos. 20(2), 179–191 (1999). doi:10.1002/pc.10345

    Article  CAS  Google Scholar 

  14. Bickerton, S., Buntain, M.J., Somashekar, A.A.: The viscoelastic compression behavior of liquid composite molding preforms. Compos. A: Appl. Sci. Manuf. 34(5), 431–444 (2003). doi:10.1016/s1359-835x(03)00088-5

    Article  Google Scholar 

  15. Klunker, F., Aranda, S., Ziegmann, G.: Permeability and compaction models for non-crimped fabrics to perform 3D simulations of vacuum assisted resin infusion. In: The 9th International Conference on Flow Processes in Composite Materials, Montreal, Canada (2008)

  16. Yang, J.S., Xiao, J.Y., Zeng, J.C., Jiang, D.Z., Peng, C.Y.: Compaction behavior and part thickness variation in vacuum infusion molding process. Appl. Compos. Mater. 19(3–4), 443–458 (2012). doi:10.1007/s10443-011-9217-8

    Article  CAS  Google Scholar 

  17. Greb, C., Schnabel, A., Linke, M.: New technology and process chains for high volume production of textile preforms. Paper presented at the 17th SAMPE Germany conference, Aachen

  18. Aranda, S., Klunker, F., Ziegmann, G.: Influence of the binding system in the compaction behavior of NCF carbon fiber reinforcement. In: Proceedings of ICCM18, Jeju (2011)

  19. Unal, R., Dean, E.B.: Taguchi approach to design optimization for quality and cost: an overview. In: Proceedings of the 13th Annual Conference of the International Society of Parametric Analysis, Louisiana (1991)

  20. Lin, T.R.: Optimisation technique for face milling stainless steel with multiple performance characteristics. Int. J. Adv. Manuf. Technol. 19(5), 330–335 (2002). doi:10.1007/s001700200021

    Article  Google Scholar 

  21. Yang, W.H., Tarng, Y.S.: Design optimization of cutting parameters for turning operations based on the Taguchi method. J. Mater. Process. Technol. 84(1–3), 122–129 (1998). doi:10.1016/s0924-0136(98)00079-x

    Article  Google Scholar 

  22. Shaji, S., Radhakrishnan, V.: Analysis of process parameters in surface grinding with graphite as lubricant based on the Taguchi method. J. Mater. Process. Technol. 141(1), 51–59 (2003). doi:10.1016/s0924-0136(02)01112-3

    Article  CAS  Google Scholar 

  23. Taguchi, G.: Introduction to Quality Engineering. Asian Productivity Organization (APO) (1990)

  24. Nalbant, M., Gokkaya, H., Sur, G.: Application of Taguchi method in the optimization of cutting parameters for surface roughness in turning. Mater. Des. 28(4), 1379–1385 (2007). doi:10.1016/j.matdes.2006.01.008

    Article  CAS  Google Scholar 

  25. Parton, H., Baets, J., Lipnik, P., Goderis, B., Devaux, J., Verpoest, I.: Properties of poly(butylene terephthatlate) polymerized from cyclic oligomers and its composites. Polymer 46(23), 9871–9880 (2005). doi:10.1016/j.polymer.2005.07.082

    Article  CAS  Google Scholar 

  26. Ross, P.J.: Taguchi Technique for Quality Engineering. McGraw-Hill (1998)

  27. Roy, R.K.: A Primer on Taguchi Method. Van Nostrad Reinhold (1990)

Download references

Acknowledgments

The authors wish to acknowledge the financial support from Forschungskuratorium textile (FKT) and Chinese Scholarship Council (CSC). A word of thanks also goes to the Institute of Textile Technology Aachen for supplying the textile reinforcement in the frame of scientific research project DFG-AiF-Cluster “Leichtbau und Textilien”. Additional thanks also go to Zhe Liu for conducting the series experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wangqing Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, W., Jiang, B., Xie, L. et al. Effect of Compaction and Preforming Parameters on the Compaction Behavior of Bindered Textile Preforms for Automated Composite Manufacturing. Appl Compos Mater 20, 907–926 (2013). https://doi.org/10.1007/s10443-012-9308-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-012-9308-1

Keywords

Navigation