Skip to main content
Log in

A Global/Local Finite Element Approach for Predicting Interlaminar and Intralaminar Damage Evolution in Composite Stiffened Panels Under Compressive Load

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

This paper addresses the prediction of intralaminar and interlaminar damage onset and evolution in composite structures through the use of a finite element based procedure. This procedure joins methodologies whose credibility has been already assessed in literature such as the Virtual Crack Closure Technique (for delamination) and the ply discount approach (for matrix/fiber failures). In order to establish the reliability of the procedure developed, comparisons with literature experimental results on a stiffened panel with an embedded delamination are illustrated. The methodology proposed, implemented in ANSYS © as post-processing routines, is combined with a finite element model of the panel, built by adopting both shell and solid elements within the frame of an embedded global/local approach to connect differently modelled substructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Abrate, S.: Impact on composite structures. Cambridge University Press (1998)

  2. Nilsson, K.F., Asp, L.E., Alpman, J.E., Nystedt, L.: Delamination buckling and growth for delaminations at different depths in a slender composite panel. Int. J. Solids Struct. 38, 3039–3071 (2001)

    Article  Google Scholar 

  3. Whitcomb, J.D.: Analysis of a laminate with a postbuckled embedded delamination, including contact effects. Int. J. Compos. Mater. 26, 1523–1535 (1992)

    Article  Google Scholar 

  4. Perugini, P., Riccio, A., Scaramuzzino, F.: Influence of delamination growth and contact phenomena on the compressive behaviour of composite panels. Int. J. Compos. Mater. 33(15), 1433–1456 (1999)

    CAS  Google Scholar 

  5. Gaudenzi, P., Perugini, P., Riccio, A.: Post-buckling behaviour of composite panels in the presence of unstable delaminations. Compos Struct 51, 301–309 (2001)

    Article  Google Scholar 

  6. Whitcomb, J.D., Shivakumar, K.N.: Strain-energy release rate analysis of plates with postbuckled delaminations. J. Compos Mater 23, 714–734 (1989)

    Article  Google Scholar 

  7. Whitcomb, J.D.: Instability related delamination growth of embedded and edge delamination, NASA/TM-1988-100655

  8. Mukherjee, Y.X., Gulrajani, S.N., Mukherjee, S., Netravali, A.N.: A numerical and experimental study of delaminated layered composites. J. Compos Mater 28, 837–870 (1994)

    CAS  Google Scholar 

  9. Nilsson, K.F., Asp, L.E., Sjogren, A.: On transition of delamination growth behaviour for compression loaded composite panels. Int. J. Solids Struct. 38, 8407–8440 (2001)

    Article  Google Scholar 

  10. Sun, X., Tong, L., Chen, H.: Progressive failure analysis of laminated plates with delamination. J. Reinf. Plast. Compos. 20, 1370–1389 (2001)

    Article  CAS  Google Scholar 

  11. Liu, S., Chang, F.K.: Matrix cracking effect on delamination growth in composite laminates induced by a spherical indenter. J. Compos. Mater. 28, 940–977 (1994)

    CAS  Google Scholar 

  12. Riccio, A., Pietropaoli, E.: Modelling damage propagation in composite plates with embedded delamination under compressive load 2008, 2008, 42(13), 1309–1335.

  13. Hellan, K.: Introduction to fracture mechanics. International student edition McGraw Hill Singapore (1985)

  14. Krueger, R.: The virtual crack closure technique: history, approach and applications, NASA/CR-2002-211628

  15. Reeder, J.R.: An evaluation of mixed-mode delamination failure criteria, NASA-TM-104210

  16. Orifici, A.C., de Zarate Alberdi, I.O., Thomson, R.S., Bayandor, J.: Compression and post-buckling damage growth and collapse analysis of flat composite stiffened panels. Compos. Sci. Technol. 68, 3150–3160 (2008)

    Article  Google Scholar 

  17. Hashin, Z.: Failure criteria for unidirectional fibre composites. J. Appl. Mech. 47, 329–334 (1980)

    Article  Google Scholar 

  18. Shokrieh, M., Lessard, L.B.: Progressive fatigue damage modeling of composite materials, Part I: modeling. J. Compos. Mater. 34, 1056–1115 (2000)

    Article  Google Scholar 

  19. Sleight, D.W.: Progressive failure analysis methodology for laminated composite structures, NASA/TP-1999-209107

  20. Hahn, H.T., Tsai, S.W.: On the behaviour of composite laminates after initial failures. Astronaut. Aeronaut. 21, 58–62 (1983)

    Google Scholar 

  21. Chanh Fu-Kuo, Chang Huo-Yen: A progressive damage model for laminated composites containing stress concentrations. J. Compos. Mater. 21, 834–855 (1987)

    Google Scholar 

  22. Tan, S.: A Progressive failure model for composite laminates containing openings. J. Compos. Mater. 25, 556–577 (1991)

    Google Scholar 

  23. Engelstad, S.P., Reddy, J.N., Knight, N.F.: Postbuckling response and failure prediction of graphite-epoxy plates loaded in compression. AIAA J. 30, 2106–2113 (1992)

    Article  Google Scholar 

  24. Hahn, H.T., Tsai, S.W.: On the behaviour of composite laminates after initiation failures. J. Compos. Mater. 8, 288–305 (1974)

    Article  Google Scholar 

  25. Chou, S.-C., Orringer, O., Rainey, J.H.: Post-failure behaviour of laminates I-no stress concentration. J. Compos. Mater 10, 371–381 (1976)

    Article  CAS  Google Scholar 

  26. Chou, S.-C., Orringer, O., Rainey, J.H.: Post-failure behaviour of laminates II- stress concentration. J. Compos. Mater. 11, 71–78 (1977)

    Article  CAS  Google Scholar 

  27. Suemasu, H., Takahashi, H., Ishikawa, T.: On failure mechanisms of composite laminates with an open hole subjected to compressive load. Compos. Sci. Technol. 66, 634–641 (2006)

    Article  CAS  Google Scholar 

  28. Greenhalgh, E., Meeks, C., Clarke, A., Thatcher, J.: The effect of defects on the performance of post-buckled CFRP stringer-stiffened panels. Compos. Part A 34, 623–633 (2003)

    Article  Google Scholar 

  29. ANSYS 11.0 user manual

  30. Asp, L., Sjogren, A., Greenhalgh, E.: Delamination growth and thresholds in a carbon/epoxy composite under fatigue loading. J. Compos. Technol. Res. 23, 55–68 (2001)

    Article  CAS  Google Scholar 

  31. Tsamtsakis, D., Wevers, M., De Meester, P.: Damage monitoring during fatigue loading of quasi-isotropic carbon epoxy laminates, Non destructive testing Van Hemelrijck & Annastassopulos eds, 1996 Balken Rotterdam, ISBN 905410595X

Download references

Acknowledgements

The research leading to these results has received funding from the European Community’s Seventh Framework Programme FP7/2007–2013 under grant agreement n°213371-MAAXIMUS. Part of the work reported in this paper has been presented to the 2nd ECCOMAS Thematic Conference on the Mechanical Response of Composites (London, 2009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Pietropaoli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pietropaoli, E., Riccio, A. A Global/Local Finite Element Approach for Predicting Interlaminar and Intralaminar Damage Evolution in Composite Stiffened Panels Under Compressive Load. Appl Compos Mater 18, 113–125 (2011). https://doi.org/10.1007/s10443-010-9135-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-010-9135-1

Keywords

Navigation