Skip to main content

Advertisement

Log in

Coexistence of Habitat Specialists and Generalists in Metapopulation Models of Multiple-Habitat Landscapes

  • Original Article
  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

In coarse-grained environments specialists are generally predicted to dominate. Empirically, however, coexistence with generalists is often observed. We present a simple, but previously unrecognized, mechanism for coexistence of a habitat generalist and a number of habitat specialist species. In our model all species have a metapopulation structure in a landscape consisting of patches of different habitat types, governed by local extinction and colonization. Each specialist is limited to its specific type of habitat. The generalist can use more types of habitat, has a lower local competitive ability but can exploit patches left open by the specialists. Our modeling shows that coexistence is easily possible. The mechanism amounts to a colonization/competition trade-off at the landscape level, where the colonization advantage of the inferior competitor does not arise from a higher colonization rate but from its ability to use more types of habitat. Habitat availability has to be intermediate: when there are few patches of each habitat, only the generalist is able to maintain itself and when there are many patches, high propagule pressure of the specialists excludes the generalist. Habitat selection or temporal variations in relative habitat quality are not necessary for coexistence. Increased niche-width, colonization rate or local competitive ability of the generalist enhances its performance compared to the specialists. Various types of habitat degradation favour generalism. When able to use a broad range of habitats, generalists can generate so much propagule pressure that only a low level of local competitive ability is needed to globally exclude the specialists. Hence, in a reversal of the original problem, the question is why there are so many specialist metapopulations?

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abrams PA (2006) The prerequisites for and likelihood of generalist-specialist coexistence. Am Nat 167(3):329–342

    Article  Google Scholar 

  • Adler FR, Mosquera J (2000) Is space necessary? Interference competition and limits to biodiversity. Ecology 81(11):3226–3232

    Article  Google Scholar 

  • Agosta SJ, Klemens JA (2009) Resource specialization in a phytophagous insect: no evidence for genetically based performance trade-offs across hosts in the field or laboratory. J Evol Biol 22(4):907–912. doi:10.1111/j.1420-9101.2009.01694.x

    Article  Google Scholar 

  • Armstrong RA (1976) Fugitive species—experiments with fungi and some theoretical considerations. Ecology 57(5):953–963

    Article  Google Scholar 

  • Bengtsson J, Nilsson SG, Franc A, Menozzi P (2000) Biodiversity, disturbances, ecosystem function and management of European forests. For Ecol Manage 132(1):39–50

    Article  Google Scholar 

  • Bernays E, Graham M (1988) On the evolution of host specificity in phytophagous arthropods. Ecology 69(4):886–892

    Article  Google Scholar 

  • Biesmeijer JC, Roberts SPM, Reemer M, Ohlemuller R, Edwards M, Peeters T, Schaffers AP, Potts SG, Kleukers R, Thomas CD, Settele J, Kunin WE (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313(5785):351–354

    Article  Google Scholar 

  • Bonte D, Vandenbroecke N, Lens L, Maelfait JP (2003) Low propensity for aerial dispersal in specialist spiders from fragmented landscapes. Proc R Soc B 270(1524):1601–1607. doi:10.1098/rspb.2003.2432

    Article  Google Scholar 

  • Brown JH (1984) On the relationship between abundance and distribution of species. Am Nat 124(2):255–279. doi:10.1086/284267

    Article  Google Scholar 

  • Brown JH (1995) Macroecology. The University of Chicago Press, Chicago

    Google Scholar 

  • Brown JS (1996) Coevolution and community organization in three habitats. Oikos 75(2):193–206

    Article  Google Scholar 

  • Brown JS, Pavlovic NB (1992) Evolution in heterogeneous environments—effects of migration on habitat specialization. Evol Ecol 6(5):360–382

    Article  Google Scholar 

  • Calcagno V, Mouquet N, Jarne P, David P (2006) Coexistence in a metacommunity: the competition-colonization trade-off is not dead. Ecol Lett 9(8):897–907. doi:10.1111/j.1461-0248.2006.00930.x

    Article  Google Scholar 

  • Caswell H (1978) Predator-mediated coexistence: a nonequilibrium model. Am Nat 112:127–154

    Article  Google Scholar 

  • Caswell H, Cohen JE (1991) Disturbance, interspecific interaction and diversity in metapopulations. Biol J Linn Soc 42(1–2):193–218

    Article  Google Scholar 

  • Colles A, Liow LH, Prinzing A (2009) Are specialists at risk under environmental change? Neoecological, paleoecological and phylogenetic approaches. Ecol Lett 12(8):849–863. doi:10.1111/j.1461-0248.2009.01336.x

    Article  Google Scholar 

  • Comins HN, Hamilton WD, May RM (1980) Evolutionarily stable dispersal strategies. J Theor Biol 82:205–230

    Article  Google Scholar 

  • Connell JH (1978) Diversity in tropical rainforests and coral reefs. Science 199(4335):1302–1310

    Article  Google Scholar 

  • Davis ALV (1994) Habitat fragmentation in Southern Africa and distributional response patterns in 5 specialist or generalist dung beetle families (Coleoptera). Afr J Ecol 32(3):192–207

    Article  Google Scholar 

  • Devictor V, Robert A (2009) Measuring community responses to large-scale disturbance in conservation biogeography. Divers Distrib 15(1):122–130. doi:10.1111/j.1472-4642.2008.00510.x

    Article  Google Scholar 

  • Devictor V, Julliard R, Jiguet F (2008) Distribution of specialist and generalist species along spatial gradients of habitat disturbance and fragmentation. Oikos 117(4):507–514. doi:10.1111/j.2008.0030-1299.16215.x

    Article  Google Scholar 

  • Egas M, Dieckmann U, Sabelis MW (2004) Evolution restricts the coexistence of specialists and generalists: the role of trade-off structure. Am Nat 163(4):518–531

    Article  Google Scholar 

  • Hanski I (ed) (1999) Metapopulation ecology. Oxford University Press, Oxford

    Google Scholar 

  • Hanski I, Gilpin ME (eds) (1997) Metapopulation biology: ecology, genetics, and evolution. Academic Press, San Diego

    Google Scholar 

  • Hastings A (1980) Disturbance, coexistence, history, and competition for space. Theor Popul Biol 18:363–373

    Article  Google Scholar 

  • Hutchinson GE (1951) Copepodology for the ornithologist. Ecology 32:571–577

    Article  Google Scholar 

  • Jaenike J (1990) Host specialization in phytophagous insects. Annu Rev Ecol Syst 21:243–273

    Article  Google Scholar 

  • Levins R (1968) Evolution in changing environments: some theoretical explorations. Monographs in population biology. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Levins R (1969) Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull Entomol Soc Am 15:237–240

    Google Scholar 

  • Levins R, Culver D (1971) Regional coexistence of species and competition between rare species. Proc Natl Acad Sci USA 6S(6):1246–1248

    Article  Google Scholar 

  • Marvier M, Kareiva P, Neubert MG (2004) Habitat destruction, fragmentation, and disturbance promote invasion by habitat generalists in a multispecies metapopulation. Risk Anal 24(4):869–878

    Article  Google Scholar 

  • McKinney ML (1997) Extinction vulnerability and selectivity: combining ecological and paleontological views. Annu Rev Ecol Syst 28:495–516

    Article  Google Scholar 

  • Menken SBJ, Roessingh P (1998) Evolution of insect-plant associations: sensory perception and receptor modifications direct food specialization and host shifts in phytophagous insects. In: Howard DJ, Berlocher SH (eds) Endless forms. University Press, Oxford, pp 145–156

    Google Scholar 

  • Menken SBJ, Boomsma JJ, van Nieukerken EJ (2010) Large-scale evolutionary patterns of host plant associations in the Lepidoptera. Evolution 64(4):1098–1119. doi:10.1111/j.1558-5646.2009.00889.x

    Article  Google Scholar 

  • Morris DW (1992) Scales and costs of habitat selection in heterogeneous landscapes. Evol Ecol 6(5):412–432

    Article  Google Scholar 

  • Morris DW (1996) Coexistence of specialist and generalist rodents via habitat selection. Ecology 77(8):2352–2364

    Article  Google Scholar 

  • Nagelkerke CJ, Verboom J, van den Bosch F, van de Wolfshaar K (2002) Time lags in metapopulation responses to landscape change. In: Gutzwiller KJ (ed) Applying landscape ecology in biological conservation. Springer, Berlin, pp 330–354

    Chapter  Google Scholar 

  • Nee S, May RM (1992) Dynamics of metapopulations: habitat destruction and competitive coexistence. J Anim Ecol 61:37–40

    Article  Google Scholar 

  • Nurmi T, Parvinen K (2008) On the evolution of specialization with a mechanistic underpinning in structured metapopulations. Theor Popul Biol 73(2):222–243

    Article  Google Scholar 

  • Nurmi T, Parvinen K (2011) Joint evolution of specialization and dispersal in structured metapopulations. J Theor Biol 275(1):78–92. doi:10.1016/j.jtbi.2011.01.023

    Article  Google Scholar 

  • Parvinen K (2006) Evolution of dispersal in a structured metapopulation model in discrete time. Bull Math Biol 68(3):655–678. doi:10.1007/s11538-005-9040-1

    Article  Google Scholar 

  • Parvinen K, Egas M (2004) Dispersal and the evolution of specialisation in a two-habitat type metapopulation. Theor Popul Biol 66(3):233–248

    Article  Google Scholar 

  • Poethke HJ, Hovestadt T, Mitesser O (2003) Local extinction and the evolution of dispersal rates: causes and correlations. Am Nat 161(4):631–640

    Article  Google Scholar 

  • Rausher MD (1988) Is coevolution dead? Ecology 69(4):898–901

    Article  Google Scholar 

  • Ravigne V, Dieckmann U, Olivieri I (2009) Live where you thrive: joint evolution of habitat choice and local adaptation facilitates specialization and promotes diversity. Am Nat 174(4):E141–E169. doi:10.1086/605369

    Article  Google Scholar 

  • Rosenzweig ML (1987) Habitat selection as a source of biological diversity. Evol Ecol 1:315–330

    Article  Google Scholar 

  • Rueffler C, Egas M, Metz JAJ (2006) Evolutionary predictions should be based on individual-level traits. Am Nat 168(5):E148–E162

    Article  Google Scholar 

  • Thompson JN (ed) (1994) The coevolutionary process. University Press, Chicago

    Google Scholar 

  • Thompson JN (1996) Trade-offs in larval performance on normal and novel hosts. Entomol Exp Appl 80(1):133–139

    Article  Google Scholar 

  • Tilman D (1994) Competition and biodiversity in spatially structured habitats. Ecology 75(1):2–16

    Article  Google Scholar 

  • Tilman D, May RM, Lehman CL, Nowak MA (1994) Habitat destruction and the extinction debt. Nature 371:65–66

    Article  Google Scholar 

  • Tilman D, Lehman CL, Yin CJ (1997) Habitat destruction, dispersal, and deterministic extinction in competitive communities. Am Nat 149(3):407–435

    Article  Google Scholar 

  • Turner IM (1996) Species loss in fragments of tropical rain forest: a review of the evidence. J Appl Ecol 33:200–209

    Article  Google Scholar 

  • Verberk WCEP, van der Velde G, Esselink H (2010) Explaining abundance–occupancy relationships in specialists and generalists: a case study on aquatic macroinvertebrates in standing waters. J Anim Ecol 79(3):589–601. doi:10.1111/j.1365-2656.2010.01660.x

    Article  Google Scholar 

  • Vieira L, Louzada JNC, Spector S (2008) Effects of degradation and replacement of Southern Brazilian coastal sandy vegetation on the dung beetles (Coleoptera: Scarabaeidae). Biotropica 40(6):719–727. doi:10.1111/j.1744-7429.2008.00432.x

    Article  Google Scholar 

  • Weiner J, Xiao S (2012) Variation in the degree of specialization can maintain local diversity in model communities. Theor Ecol 5(2):161–166. doi:10.1007/s12080-011-0153-x

    Article  Google Scholar 

  • Wilson DS, Yoshimura J (1994) On the coexistence of specialists and generalists. Am Nat 144(4):692–707

    Article  Google Scholar 

Download references

Acknowledgments

Martijn Egas, Minus van Baalen and Rampal Etienne participated in stimulating discussions and improved an earlier version of the manuscript. The Priority Programme “Biodiversity in Disturbed Ecosystems” of the Netherlands Organization for Scientific Research (NWO) provided funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelis J. Nagelkerke.

Appendix: critical γ for specialist existence

Appendix: critical γ for specialist existence

Without specialists \( g^{*} = N - \frac{e}{hc} \). Eq. (1a) then gives \( \frac{{{\text{d}}s}}{{{\text{d}}t}} = sc(N - s - \gamma \left[ {N - \frac{e}{hc}} \right]) - es - c\gamma hs\left[ {N - \frac{e}{hc}} \right] \). When N is large the specialist cannot invade (\( \frac{{{\text{d}}s}}{{{\text{d}}t}} < 0{\text{ for small }}s \)) when \( \gamma > \frac{1}{1 + h} \).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagelkerke, C.J., Menken, S.B.J. Coexistence of Habitat Specialists and Generalists in Metapopulation Models of Multiple-Habitat Landscapes. Acta Biotheor 61, 467–480 (2013). https://doi.org/10.1007/s10441-013-9186-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10441-013-9186-4

Keywords

Navigation