Skip to main content
Log in

Structural Stability in Local Thermal Non-equilibrium Porous Media

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

We consider a theory for local thermal non-equilibrium in a porous medium where the solid and fluid components may have different temperatures. A priori estimates are derived for a solution to the governing partial differential equations and these are employed in an analysis of continuous dependence and of convergence. It is shown that the solution depends continuously on changes in the coefficient governing the interaction between the fluid and solid temperatures. This coefficient is key to the theory since this is where the equations are coupled. We also prove a convergence result demonstrating that the solution converges appropriately as the coupling coefficient vanishes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Calmidi, V.V., Mahajan, R.L.: Forced convection in high porosity metal foams. J. Heat Transf. 122(3), 557–565 (2000). doi:10.1115/1.1287793

    Article  Google Scholar 

  2. Lefebvre, L.P., Banhart, J., Dunand, D.C.: Porous metals and metallic foams: current status and recent developments. Adv. Eng. Mater. 10(9), 775–787 (2008). doi:10.1002/adem.200800241. (Conference: 5th Biennial International Conference on Porous Metals and Metallic Foams, Montreal, Canada Sep. 2007)

    Article  Google Scholar 

  3. Zhao, C.Y., Lu, T.J., Hodson, H.P.: Thermal radiation in ultralight metal foams with open cells. Int. J. Heat Mass Transf. 47(14-16), 2927–2939 (2004). doi:10.1016/j.ijheatmasstransfer.2004.03.006

    Article  Google Scholar 

  4. Edwards, D.A.: Charge-transport through a spatially periodic porous medium—electrokinetic and convective dispersion phenomena. Philos. Trans. R. Soc., Math. Phys. Eng. Sci. 353(1702), 205–242 (1995). doi:10.1098/rsta.1995.0098

    Article  MATH  Google Scholar 

  5. Capone, F., Gentile, M., Hill, A.A.: Convection problems in anisotropic porous media with nonhomogeneous porosity and thermal diffusivity. Acta Appl. Math. 122(1), 85–91 (2012). doi:10.1007/s10440-012-9728-9

    MATH  MathSciNet  Google Scholar 

  6. Svanadze, M.: Plane waves and boundary value problems in the theory of elasticity for solids with double porosity. Acta Appl. Math. 122(1), 461–471 (2012). doi:10.1007/s10440-012-9756-5

    MATH  MathSciNet  Google Scholar 

  7. Ciarletta, M., Passarella, F., Svanadze, M.: Plane waves and uniqueness theorems in the coupled linear theory of elasticity for solids with double porosity. J. Elast. 114(1), 55–68 (2014). doi:10.1007/s10659-012-9426-x

    Article  MATH  MathSciNet  Google Scholar 

  8. Straughan, B.: Heat Waves. Applied Mathematical Sciences, vol. 177. Springer, New York (2011)

    MATH  Google Scholar 

  9. Nield, D.A., Kuznetsov, A.V.: Local thermal nonequilibrium effects in forced convection in a porous medium channel: a conjugate problem. Int. J. Heat Mass Transf. 42(17), 3245–3252 (1999). doi:10.1016/S0017-9310(98)00386-X

    Article  MATH  Google Scholar 

  10. Petit, F., Fichot, F., Quintard, M.: Écoulement diphasique en milieu poreux: modèle à non-équilibre local (Two-phase flow in porous media: local non-equilibrium model). Int. J. Therm. Sci. 38(3), 239–249 (1999). doi:10.1016/S1290-0729(99)80087-8

    Article  Google Scholar 

  11. Oliveira, A.A.M., Kaviany, M.: Nonequilibrium in the transport of heat and reactants in combustion in porous media. Prog. Energy Combust. Sci. 27(5), 523–545 (2001). doi:10.1016/S0360-1285(00)00030-7

    Article  Google Scholar 

  12. Afrin, N., Zhang, Y., Chen, J.K.: Thermal lagging in living biological tissue based on nonequilibrium heat transfer between tissue, arterial and venous bloods. Int. J. Heat Mass Transf. 54(11–12), 2419–2426 (2011). doi:10.1016/j.ijheatmasstransfer.2011.02.020

    Article  MATH  Google Scholar 

  13. Joseph, D.D.: Stability of Fluid Motions, vol. II. Springer, New York (1976)

    Google Scholar 

  14. Straughan, B.: Stability and Wave Motion in Porous Media. Applied Mathematical Sciences, vol. 165. Springer, New York (2008)

    MATH  Google Scholar 

  15. Aulisa, E., Bloshanskaya, L., Hoang, L., Ibragimov, A.: Analysis of generalized Forchheimer flows of compressible fluids in porous media. J. Math. Phys. 50(10), 103102 (2009). doi:10.1063/1.3204977

    Article  MathSciNet  Google Scholar 

  16. Celebi, A.O., Kalantarov, V.K., Ugurlu, D.: On continuous dependence on coefficients of the Brinkman-Forchheimer equations. Appl. Math. Lett. 19(8), 801–807 (2006). doi:10.1016/j.aml.2005.11.002

    Article  MATH  MathSciNet  Google Scholar 

  17. Chirita, S., Ciarletta, M., Straughan, B.: Structural stability in porous elasticity. Proc. R. Soc. A Math. Phys. 462, 2593–2605 (2006). doi:10.1098/rspa.2006.1695

    Article  MATH  MathSciNet  Google Scholar 

  18. Ciarletta, M., Straughan, B., Tibullo, V.: Structural stability for a rigid body with thermal microstructure. Int. J. Eng. Sci. 48, 592–598 (2010). doi:10.1016/j.ijengsci.2010.03.002

    Article  MATH  MathSciNet  Google Scholar 

  19. Ciarletta, M., Straughan, B., Tibullo, V.: Modelling boundary and nonlinear effects in porous media flow. Nonlinear Anal., Real World Appl. 12, 2839–2843 (2011). doi:10.1016/j.nonrwa.2011.02.023

    Article  MATH  MathSciNet  Google Scholar 

  20. Hoang, L., Ibragimov, A.: Structural stability of generalized Forchheimer equations for compressible fluids in porous media. Nonlinearity 24(1), 1–41 (2011). doi:10.1088/0951-7715/24/1/001

    Article  MATH  MathSciNet  Google Scholar 

  21. Hoang, L., Ibragimov, A.: Qualitative study of generalized Forchheimer flows with the flux boundary condition. Adv. Differ. Equ. 17(5–6), 511–556 (2012)

    MATH  MathSciNet  Google Scholar 

  22. Kalantarov, V., Zelik, S.: Smooth attractors for the Brinkman-Forchheimer equations with fast growing nonlinearities. Commun. Pure Appl. Anal. 11, 2037–2054 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  23. Liu, Y.: Convergence and continuous dependence for the Brinkman-Forchheimer equations. Math. Comput. Model. 49(7–8), 1401–1415 (2009). doi:10.1016/j.mcm.2008.11.010

    Article  MATH  Google Scholar 

  24. Liu, Y., Du, Y., Lin, C.: Convergence results for Forchheimer’s equations for fluid flow in porous media. J. Math. Fluid Mech. 12(4), 576–593 (2010). doi:10.1007/s00021-009-0303-8

    Article  MATH  MathSciNet  Google Scholar 

  25. Liu, Y., Du, Y., Lin, C.: Convergence and continuous dependence results for the Brinkman equations. Appl. Math. Comput. 215(12), 4443–4455 (2010). doi:10.1016/j.amc.2009.12.047

    Article  MATH  MathSciNet  Google Scholar 

  26. Liu, Y., Lin, Y., Li, Y.: Convergence result for the thermoelasticity of type III. Appl. Math. Lett. 26(1), 97–102 (2013). doi:10.1016/j.aml.2012.04.001

    Article  MATH  MathSciNet  Google Scholar 

  27. Ouyang, Y., Yang, L.: A note on the existence of a global attractor for the Brinkman-Forchheimer equations. Nonlinear Anal. 70(5), 2054–2059 (2009). doi:10.1016/j.na.2008.02.121

    Article  MATH  MathSciNet  Google Scholar 

  28. Payne, L.E., Straughan, B.: Analysis of the boundary condition at the interface between a viscous fluid and a porous medium and related modelling questions. J. Math. Pures Appl. 77(4), 317–354 (1998). doi:10.1016/S0021-7824(98)80102-5

    Article  MATH  MathSciNet  Google Scholar 

  29. Straughan, B.: Continuous dependence on the heat source in resonant porous penetrative convection. Stud. Appl. Math. 127(3), 302–314 (2011). doi:10.1111/j.1467-9590.2011.00521.x

    Article  MATH  MathSciNet  Google Scholar 

  30. Tibullo, V., Zampoli, V.: A uniqueness result for the Cattaneo-Christov heat conduction model applied to incompressible fluids. Mech. Res. Commun. 38(1), 77–79 (2011). doi:10.1016/j.mechrescom.2010.10.008

    Article  MATH  Google Scholar 

  31. Ugurlu, D.: On the existence of a global attractor for the Brinkman-Forchheimer equations. Nonlinear Anal. 68(7), 1986–1992 (2008). doi:10.1016/j.na.2007.01.025

    Article  MATH  MathSciNet  Google Scholar 

  32. You, Y., Zhao, C., Zhou, S.: The existence of uniform attractors for 3D Brinkman-Forchheimer equations. Discrete Contin. Dyn. Syst., Ser. A 32(10), 3787–3800 (2012). doi:10.3934/dcds.2012.32.3787

    Article  MATH  MathSciNet  Google Scholar 

  33. Hirsch, M.W., Smale, S.: Differential equations, dynamical systems, and linear algebra. Academic Press, New York (1974)

    MATH  Google Scholar 

  34. Straughan, B.: Global nonlinear stability in porous convection with a thermal non-equilibrium model. Proc. R. Soc. A Math. Phys. 462(2066), 409–418 (2006). doi:10.1098/rspa.2005.1555

    Article  MATH  MathSciNet  Google Scholar 

  35. Falsaperla, P., Giacobbe, A., Mulone, G.: Does symmetry of the operator of a dynamical system help stability? Acta Appl. Math. 122(1), 239–253 (2012). doi:10.1007/s10440-012-9740-0

    MATH  MathSciNet  Google Scholar 

  36. Dacorogna, B.: Direct Methods in the Calculus of Variations, 2nd edn. Appl. Math. Sci. Ser., vol. 78. Springer, Berlin (2008)

    MATH  Google Scholar 

Download references

Acknowledgements

We are indebted to two anonymous referees for their careful reading of a previous version of this paper. Their trenchant remarks have led to substantial improvements. One referee, in particular, spotted several errors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Zampoli.

Appendix

Appendix

We use Rellich identities, cf. Chirita et al. [17] and the references therein, to estimate ∥G α ∥ and ∥∇G α ∥ in (7).

Consider the identity, with GG 1 or G 2,

$$\int_{\varOmega} x_{k}G_{,k}\varDelta Gdx=0. $$

We integrate this by parts and write on Γ,

$$G_{,i}=n_{i}\dfrac{\partial G}{\partial n}+a^{\alpha\beta}x^i_{;\alpha}G_{;\beta}, $$

where a αβ is the fundamental form for the surface Γ, ξ 1 and ξ 2 are the surface coordinates, \(x^{i}_{;\alpha}=\partial x^{i}/\partial \xi^{\alpha}\), n i  represents the unit normal to Γ, and /∂n is the normal derivative on Γ. In this manner we may show

$$\begin{aligned} \frac{1}{2}\Vert \nabla G \Vert ^{2} =&\frac{1}{2} \oint_{\varGamma} x_{i}n_{i} \vert \nabla G\vert ^{2}dA- \oint_{\varGamma} x_{i}n_{i} \biggl( \frac{\partial G}{\partial n} \biggr) ^{2}dA \\ &{}-\oint_{\varGamma} \frac{\partial G}{\partial n}\,x_ka^{\alpha\beta}x^k_{;\alpha}G_{;\beta} \,dA. \end{aligned}$$
(28)

Suppose now

$$ \max_{\varGamma}\bigl\vert x_{i} x^i_{;\alpha} \bigr\vert =\delta_{0}, $$
(29)

and given the properties of Ω suppose also that

$$x_{i}n_{i}\geq k_{0}>0\quad\text{on}\ \varGamma, $$

for some constant k 0. We use the arithmetic-geometric mean inequality with a constant α>0, to show from (28) that

$$\begin{aligned} &\Vert \nabla G\Vert ^{2}+ \biggl( k_{0}-\frac{\delta_{0}}{\alpha} \biggr) \oint_{\varGamma} \biggl( \frac{\partial G}{\partial n} \biggr)^{2}dA\\ &\quad{}\leq\delta_{0}\alpha \oint_{\varGamma} \vert \nabla_{s}G\vert ^{2}dA, \end{aligned}$$

where |∇ s G|2=a αβ G ;α a μβ G ;μ . Select now α=δ 0/k 0 to find

$$ \Vert \nabla G\Vert ^{2}\leq\frac{\delta_{0}^{2}}{k_{0}} \oint_{\varGamma} \Vert \nabla_{s}G\Vert ^{2}dA. $$
(30)

Next, from the Poincaré’s inequality,

$$ \Vert \nabla G\Vert ^{2}\geq\lambda_{1}\Vert G\Vert ^{2}-c_{1} \oint_{\varGamma} G^{2}dA, $$
(31)

for a constant c 1>0, and so we employ this in (30) to derive

$$ \Vert G\Vert ^{2}\leq\frac{c_{1}}{\lambda_{1}} \oint_{\varGamma} G^{2}dA+ \frac{\delta_{0}^{2}}{\lambda_{1}k_{0}} \oint_{\varGamma} \vert \nabla_{s}G\vert ^{2}dA. $$
(32)

Finally, we replace G α in (7) by the equivalent time derivative G ,t . In this way we may derive from (32)

$$ \Vert G_{,t}\Vert ^{2}\leq\frac{c_{1}}{\lambda_{1}}\oint_{\varGamma} G_{,t}^{2}dA+ \frac{\delta_{0}^{2}}{\lambda_{1}k_{0}} \oint_{\varGamma} \vert \nabla_{s}G_{,t} \vert ^{2}dA. $$
(33)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Passarella, F., Straughan, B. & Zampoli, V. Structural Stability in Local Thermal Non-equilibrium Porous Media. Acta Appl Math 136, 43–53 (2015). https://doi.org/10.1007/s10440-014-9883-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-014-9883-2

Keywords

Mathematics Subject Classification (2010)

Navigation