Skip to main content
Log in

Modelling of an Homogeneous Equilibrium Mixture Model (HEM)

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

We present here a model for two phase flows which is simpler than the 6-equations models (with two densities, two velocities, two temperatures) but more accurate than the standard mixture models with 4 equations (with two densities, one velocity and one temperature). We are interested in the case when the two-phases have been interacting long enough for the drag force to be small but still not negligible. The so-called Homogeneous Equilibrium Mixture Model (HEM) that we present is dealing with both mixture and relative quantities, allowing in particular to follow both a mixture velocity and a relative velocity. This relative velocity is not tracked by a conservation law but by a closure law (drift relation), whose expression is related to the drag force terms of the two-phase flow. After the derivation of the model, a stability analysis and numerical experiments are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Note that this can be sustained by a dimensional analysis using a Chapman-Enskog expansion of the equation as in [1, 15, 18, 28], [8, Sect. 1.2.2, p. 58].

  2. This axis coincides with the bottom edge of the cell since the origin of the space reference is put on the bottom left corner of the cell.

  3. The initial incoming conditions (24) has been chosen in order to simplify the problem: indeed if v is a solution of the problem (23) with the initial conditions (24), then w(y 1,y 2)=v(y 1+c,y 2) is also a solution of the problem, for any arbitrary constant c.

References

  1. Ambroso, A., Chalons, C., Coquel, F., Galié, T., Godlewski, E., Raviart, P.A., Seguin, N.: The drift-flux asymptotic limit of barotropic two-phase two-pressure models. Commun. Math. Sci. 6(2), 521–529 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Baranger, C.: Modélisation, étude mathématique et simulation des collisions dans les fluides complexes. PhD thesis, École Normale Supérieure de Cachan—ENS Cachan (2004)

  3. Baudin, M., Berthon, C., Coquel, F., Masson, R., Tran, Q.H.: A relaxation method for two-phase flow models with hydrodynamic closure law. Numer. Math. 99(3), 411–440 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bendiksen, K.H., Maines, D., Moe, R., Nuland, S.: The dynamic two-fluid model OLGA: theory and application. SPE Prod. Eng. 6(2), 171–180 (1991)

    Google Scholar 

  5. Bestion, D.: The physical closure laws in the Cathare code. Nucl. Eng. Des. 124(3), 229–245 (1990)

    Article  Google Scholar 

  6. Boudin, L., Desvillettes, L., Motte, R.: A modeling of compressible droplets in a fluid. Commun. Math. Sci. 1(4), 657–669 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Caramana, E.J., Shashkov, M.J., Whalen, P.P.: Formulations of artificial viscosity for multi-dimensional shock wave computations. J. Comput. Phys. 144(1), 70–97 (1998)

    Article  MathSciNet  Google Scholar 

  8. Champmartin, A.: Modélisation et étude numérique d’écoulements diphasiques: modélisation d’un écoulement homogène équilibré: modélisation des collisions entre gouttelettes à l’aide d’un modèle simplifié de type BGK. PhD thesis, École Normale Supérieure de Cachan—ENS Cachan. http://tel.archives-ouvertes.fr/tel-00598571/, February 2011

  9. Drew, D.A., Passman, S.L.: Theory of Multicomponent Fluids. Applied Mathematical Sciences, vol. 135. Springer, New York (1999)

    Google Scholar 

  10. Dukowicz, J.K.: A particle-fluid numerical model for liquid sprays. J. Comput. Phys. 35(2), 229–253 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  11. Enwald, H., Peirano, E., Almstedt, A.E.: Eulerian two-phase flow theory applied to fluidization. Int. J. Multiph. Flow 22, 21–66 (1996)

    Article  MATH  Google Scholar 

  12. Faille, I., Heintzé, E.: A rough finite volume scheme for modeling two-phase flow in a pipeline. Comput. Fluids 28(2), 213–241 (1999)

    Article  MATH  Google Scholar 

  13. Fjelde, K.K., Karlsen, K.H.: High-resolution hybrid primitive-conservative upwind schemes for the drift flux model. Comput. Fluids 31(3), 335–367 (2002)

    Article  MATH  Google Scholar 

  14. França, F., Lahey, R.T. Jr.: The use of drift-flux techniques for the analysis of horizontal two-phase flows. Int. J. Multiph. Flow 18(6), 787–801 (1992)

    Article  MATH  Google Scholar 

  15. Galié, T.: Couplage interfacial de modèles en dynamique des fluides. Application aux écoulements diphasiques. PhD thesis, Université Pierre et Marie Curie-Paris VI (2009)

  16. Ghidaglia, J.M., Poujade, O.: Modélisation d’écoulements fluide-particules par des modèles Euler-Euler conservatifs. Technical report, Eurobios (2006)

  17. Guillard, H., Duval, F.: A Darcy law for the drift velocity in a two-phase flow model. J. Comput. Phys. 224(1), 288–313 (2007). Special issue dedicated to professor Piet Wesseling on the occasion of his retirement from Delft University of Technology

    Article  MATH  MathSciNet  Google Scholar 

  18. Guillard, H., Duval, F., Latche, J.C., Panescu, R.: Numerical multiphase modeling of bubbly flows. Ann. Univ. Ferrara 53(2), 243–253 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hibiki, T., Ishii, M.: One-dimensional drift-flux model and constitutive equations for relative motion between phases in various two-phase flow regimes. Int. J. Heat Mass Transf. 46(25), 4935–4948 (2003)

    Article  MATH  Google Scholar 

  20. Ishii, M.: One-dimensional drift-flux model and constitutive equations for relative motion between phases in various two-phase flow regimes. Technical Report ANL-77-47, Argonne National Lab Report (1977)

  21. Ishii, M., Hibiki, T.: Thermo-Fluid Dynamics of Two-Phase Flow. Springer, New York (2006)

    Book  MATH  Google Scholar 

  22. Ishii, M., Zuber, N.: Drag coefficient and relative velocity in bubbly, droplet or particulate flows. AIChE J. 25(5), 843–855 (1979)

    Article  Google Scholar 

  23. Longest, P.W., Oldham, M.J.: Numerical and experimental deposition of fine respiratory aerosols: development of a two-phase drift flux model with near-wall velocity corrections. J. Aerosol Sci. 39(1), 48–70 (2008)

    Article  Google Scholar 

  24. Manninen, M.: On the mixture model for multiphase flow. VTT Publications, Technical Research Centre of Finland, 288 (1996)

  25. Masella, J.M., Tran, Q.H., Ferre, D., Pauchon, C.: Transient simulation of two-phase flows in pipes. Int. J. Multiph. Flow 24(5), 739–755 (1998)

    Article  MATH  Google Scholar 

  26. Mathiaud, J.: Étude de systèmes de type gaz-particules. PhD thesis, École Normale Supérieure de Cachan—ENS Cachan (2006)

  27. O’Rourke, P.: Collective drop effects on vaporizing liquid sprays. PhD thesis, Princeton University (1981)

  28. Panescu, R.: Modélisation Eulerienne d’écoulements diphasiques à phase dispersée et simulation numérique par une méthode volumes—éléments finis. PhD thesis, Université de Nice Sophia Antipolis (2006)

  29. Ramos, D.: Quelques résultats mathématiques et simulations numériques d’écoulements régis par des modèles bifluides. PhD thesis, École Normale Supérieure de Cachan—ENS Cachan (2000)

  30. Raymond, P.: Flica 4: A computer code for multidimensional thermal analysis of nuclear reactor core, numerical methods for three-dimensional two-phase flow. Technical Report CEA-CONF-9030, Report CEA (1987)

  31. Roe, P.L.: Characteristic-based schemes for the Euler equations. Annu. Rev. Fluid Mech. 18, 337–365 (1986)

    Article  MathSciNet  Google Scholar 

  32. Romenski, E., Toro, E.F.: Compressible two-phase flows: two-pressure models and numerical methods. Technical report, Isaac Newton Institute for Mathematical Sciences, Cambridge University, UK, Laboratory of Applied Mathematics, Faculty of Engineering, 38050, University of Trento, Italy (2004)

  33. Schlegel, J., Hibiki, T., Ishii, M.: Development of a comprehensive set of drift-flux constitutive models for pipes of various hydraulic diameters. Prog. Nucl. Energy 52(7), 666–677 (2010)

    Article  Google Scholar 

  34. Sheppard, C.M., Morris, S.D.: Drift-flux correlation disengagement models: Part 1—Theory: analytic and numeric integration details. J. Hazard. Mater. 44(2–3), 111–125 (1995). Consequence Modeling for Plant Safety and Environmental Impact

    Article  Google Scholar 

  35. Sokolichin, A., Eigenberger, G., Lapin, A.: Simulation of buoyancy driven bubbly flow: established simplifications and open questions. AIChE J. 50, 24–45 (2004)

    Article  Google Scholar 

  36. Staedtke, H., Franchello, G., Worth, B., Graf, U., Romstedt, P., Kumbaro, A., García-Cascales, J., Paillère, H., Deconinck, H., Ricchiuto, M., Smith, B., De Cachard, F., Toro, E.F., Romenski, E., Mimouni, S.: Advanced three-dimensional two-phase flow simulation tools for application to reactor safety (astar). Nucl. Eng. Des. 235(2–4), 379–400 (2005)

    Article  Google Scholar 

  37. Stewart, H.B., Wendroff, B.: Two-phase flow: models and methods. J. Comput. Phys. 56(3), 363–409 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  38. Van Leer, B.: Towards the ultimate conservative difference scheme. 5. A second-order sequel to Godunov’s method. J. Comput. Phys. 32(1), 101–136 (1979)

    Article  Google Scholar 

  39. Wallis, G.: One Dimensional Two-Phase Flow. McGraw-Hill, New York (1969)

    Google Scholar 

  40. Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54(1), 115–173 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  41. Youngs, D.L.: Numerical simulation of turbulent mixing by Rayleigh-Taylor instability. Physica D 12(1–3), 32–44 (1984)

    Article  Google Scholar 

  42. Youngs, D.L.: Modelling turbulent mixing by Rayleigh-Taylor instability. Physica D 37(1–3), 270–287 (1989)

    Article  MathSciNet  Google Scholar 

  43. Zuber, N., Findlay, J.A.: Average volumetric concentration in two-phase flow systems. J. Heat Transf. 87, 453–468 (1965)

    Article  Google Scholar 

Download references

Acknowledgements

A.B.C. acknowledges partial support of ANR CBDif-Fr, Collective behaviour & diffusion: mathematical models and simulations ANR-08-BLAN-0333-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bernard-Champmartin.

Appendix: Proof of the Resolution of System (25)–(26) of Sect. 2.1 for the Asymptotic Resolution on u r

Appendix: Proof of the Resolution of System (25)–(26) of Sect. 2.1 for the Asymptotic Resolution on u r

Proof of the obtention of the value of V (27) thanks to the resolution of the system (24)–(25)

Putting to the square Eq. (25) and defining the variables \(X=(v_{1}^{-}-v_{1}^{+})^{2}\) and \(Y=(v_{2}^{-}- v_{2}^{+})^{2}\), we have to solve the following equation:

(65)

in terms of the variable X with Y fixed. Since X>0 by definition, we get \(X=\frac{-Y+\sqrt{Y^{2}+4\varPi_{1}^{2}}}{2}\) and as X also satisfies \(X=\frac{\varPi_{1}^{2}}{X+Y}\) (cf. (65)), then \(X=\frac{2\varPi_{1}^{2}}{Y+\sqrt{Y^{2}+4\varPi_{1}^{2}}}\). Replacing now X and Y by there values and since \(v_{1}^{-}-v_{1}^{+}\) has the same sign as Π 1 (cf. (25)), we have:

(66)

and thanks to (25),

(67)

As Π (22) is a constant vector, using the initial conditions (24), we deduce from (67) that Π 1=1>0. Thus, thanks to the definition of Π (22), we have \(\frac{\partial p}{\partial x_{1}} <0\) since all the quantities are supposed to be positive and ρ <ρ +, which gives us the value of V (V>0 by hypothesis):

$$ V=\sqrt{-\frac{r^*\frac{\partial p }{\partial x_1}}{C^*\theta_{\rho }} \biggl(\frac{1}{\rho^{-}}-\frac{1}{\rho^{+}} \biggr)}. $$
(68)

 □

Proof of Remark 1

As Π 1=1, and replacing in (66)–(67) \(v_{2}^{-}-v_{2}^{+}\) by its value (29), we immediately get that \(v_{1}^{-} -v_{1}^{+}=\exp (-\frac{\theta}{2} )\) and \(|\boldsymbol{v}^{-}-\boldsymbol{v}^{+}|=\exp\frac{\theta}{2}\). □

Proof of Proposition 1

The first point is checked immediately using the definition of E (29), (32) and with the assumption (36), we have:

(69)

where L 3 is a constant. Besides, we also get that the derivative of E tends toward 0:

(70)

These two limits will allow us to prove the second part of the Proposition using the derivative of the function w (33):

(71)
  • Reasoning by contradiction, we get the value of ϵ (ϵ=±1 thanks to its definition (29)). We suppose that \(\epsilon=-\frac{\varPi_{2}}{|\varPi_{2}|}\), thus in system (30)–(31), the quantity L(E) (34) writes:

    (72)

    Then, since we have a finite limit for E (69), the quantity L(E) also tends to a finite limit L 4≠0 when y 2→+∞ (since Π 2≠0). Besides, as we know the limit of the derivative of E (70) (which is 0), using (30), we have:

    (73)

    But relation (71) shows that \(\frac{dw}{dy_{2}}\underset {y_{2}\rightarrow+\infty}{\rightarrow} \rightarrow0\) using the condition on the velocities in the output of the cells (36), and (69)–(70). This leads to a contradiction and thus \(\epsilon=\frac{\varPi_{2}}{|\varPi_{2}|}\).

It remains to get the limit of E. As \(\epsilon=\frac{\varPi_{2}}{|\varPi _{2}|}\), we have thanks to (34) that \(L(E) \underset {y_{2}\rightarrow+\infty}{\rightarrow} 2 (\varPi_{2} -\frac{\varPi _{2}}{|\varPi_{2}|} \sqrt{L_{3}^{2}-1} )\). Since we have \(\lim_{y_{2}\rightarrow+\infty} \frac{d w}{d y_{2}}+\frac {d E}{d y_{2}} =0\) (using (70) and (71)), necessarily: \(L(E)\underset{y_{2}\rightarrow+\infty}{\rightarrow} 0\), and by the definition of L(E) (34), we get that:

(74)

which ends the Proof of Proposition 1. □

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernard-Champmartin, A., Poujade, O., Mathiaud, J. et al. Modelling of an Homogeneous Equilibrium Mixture Model (HEM). Acta Appl Math 129, 1–21 (2014). https://doi.org/10.1007/s10440-013-9827-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-013-9827-2

Keywords

Mathematics Subject Classification (2010)

Navigation