Skip to main content
Log in

Symmetry, Compatibility and Exact Solutions of PDEs

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

We discuss various compatibility criteria for overdetermined systems of PDEs generalizing the approach to formal integrability via brackets of differential operators. Then we give sufficient conditions that guarantee that a PDE possessing a Lie algebra of symmetries has invariant solutions. Finally we discuss models of equations with large symmetry algebras, which eventually lead to integration in closed form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In loc. cited only the classical Monge case p=1 (1 equation on 2 unknowns) was treated, but the general case is similar.

  2. One also need to change y↦−y to match the sign.

  3. Outside the submanifold in \(\mathcal{E}_{\epsilon}\) given by Cartan equation (8)!

  4. This means the corresponding Nijenhuis tensor N J is non-degenerate.

  5. It has Lie class ω=1, i.e. the solutions depend upon 1 function of 1 argument.

References

  1. Anderson, I.M., Fels, M.: Transformations of Darboux integrable systems. In: Kruglikov, B., Lychagin, V., Straume, E. (eds.) Differential Equations: Geometry, Symmetries and Integrability. Abel Symp., vol. 5, pp. 21–48. Springer, Berlin (2009)

    Chapter  Google Scholar 

  2. Anderson, I.M., Fels, M., Vassiliou, P.: Superposition formulas for exterior differential systems. Adv. Math. 221(6), 1910–1963 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Anderson, I.M., Kruglikov, B.: Rank 2 distributions of Monge equations: symmetries, equivalences, extensions. Adv. Math. 228(3), 1435–1465 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Anderson, I.M., Kamran, N., Olver, P.: Internal, external and generalized symmetries. Adv. Math. 100, 53–100 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Anderson, R.L., Ibragimov, N.: Lie-Bäcklund Transformations in Applications. SIAM Studies in Applied Mathematics, vol. 1. SIAM, Philadelphia (1979)

    Book  MATH  Google Scholar 

  6. Bluman, G., Cheviakov, A., Anco, S.: Applications of Symmetry Methods to Partial Differential Equations. Applied Mathematical Sciences, vol. 168. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  7. Bryant, R.L., Chern, S.S., Gardner, R.B., Goldschmidt, H.L., Griffiths, P.A.: Exterior Differential Systems. MSRI Publications, vol. 18. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  8. Cartan, É.: Les systèmes de Pfaff, à cinq variables et les équations aux dérivées partielles du second ordre. Ann. Sci. Éc. Norm. Super. (3) 27, 109–192 (1910)

    MathSciNet  Google Scholar 

  9. Cartan, É.: Sur l’équivalence absolue de certains systèmes d’équations différentielles et sur certaines familles de courbes. Bull. Soc. Math. Fr. 42, 12–48 (1914)

    MathSciNet  MATH  Google Scholar 

  10. Cartan, É.: Les systèmes différentiels extérieurs et leurs applications géométriques. Actualités Sci. Ind., vol. 994. Hermann, Paris (1945) (French)

    MATH  Google Scholar 

  11. Darboux, G.: Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal, II partie (1887), IV partie (1896). Gauthier-Villar, Paris

  12. Doubrov, B., Zelenko, I.: On local geometry of nonholonomic rank 2 distributions. J. Lond. Math. Soc. 80, 545–566 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Forsyth, A.R.: Theory of Differential Equations. Partial Differential Equations, vol. 6. Cambridge University Press, Cambridge (1906)

    Google Scholar 

  14. Gaeta, G.: Twisted symmetries of differential equations. J. Nonlinear Math. Phys. 16(1), 107–136 (2009)

    Article  MathSciNet  Google Scholar 

  15. Gerstenhaber, M.: On dominance and varieties of commuting matrices. Ann. Math. 73(2), 324–348 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  16. Goursat, E.: Lecons sur l’intégration des équations aux dérivées partielles du second ordere, II. Hermann, Paris (1898)

    Google Scholar 

  17. Igonin, S., Verbovetsky, A.: Symmetry-invariant solutions of PDEs and their generalizations (in preparation)

  18. Kruglikov, B.: Anomaly of linearization and auxiliary integrals. In: SPT 2007—Symmetry and Perturbation Theory, pp. 108–115. World Sci., Singapore (2008)

    Chapter  Google Scholar 

  19. Kruglikov, B.: Symmetry approaches for reductions of PDEs, differential constraints and Lagrange-Charpit method. Acta Appl. Math. 101(1–3), 145–161 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kruglikov, B.: Laplace transformation of Lie class ω=1 overdetermined systems. J. Nonlinear Math. Phys. 18(4), 583–611 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kruglikov, B.: Lie theorem via rank 2 distributions (integration of PDE of class ω=1). J. Nonlinear Math. Phys. (2012). arXiv:1108.5854v1

  22. Kruglikov, B.: Symmetries of almost complex structures and pseudoholomorphic foliations (2011). arXiv:1103.4404

  23. Kruglikov, B.S., Lychagin, V.V.: Mayer brackets and solvability of PDEs—II. Trans. Am. Math. Soc. 358(3), 1077–1103 (2005)

    Article  MathSciNet  Google Scholar 

  24. Kruglikov, B., Lychagin, V.: Dimension of the solutions space of PDEs. In: Calmet, J., Seiler, W., Tucker, R. (eds.) Global Integrability of Field Theories, Proc. of GIFT-2006, pp. 5–25 (2006). arXiv:math.DG/0610789

    Google Scholar 

  25. Kruglikov, B., Lychagin, V.: Geometry of differential equations. In: Krupka, D., Saunders, D. (eds.) Handbook on Global Analysis, pp. 725–771. Elsevier, Amsterdam (2008)

    Chapter  Google Scholar 

  26. Kruglikov, B.S., Lychagin, V.V.: Compatibility, multi-brackets and integrability of systems of PDEs. Acta Appl. Math. 109(1), 151–196 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Krasilschik, I.S., Lychagin, V.V., Vinogradov, A.M.: Geometry of Jet Spaces and Differential Equations. Gordon and Breach, New York (1986)

    Google Scholar 

  28. Krasilshchik, I.S., Vinogradov, A.M. (eds.): Symmetries and Conservation Laws for Differential Equations of Mathematical Physics. Transl. Math. Monograph, vol. 182. AMS, Providence (1999)

    Google Scholar 

  29. Lie, S.: Theorie der Transformationsgruppen (Zweiter Abschnitt, unter Mitwirkung von Prof. Dr. Friederich Engel). Teubner, Leipzig (1890)

    Google Scholar 

  30. Lie, S.: Zur allgemeinen teorie der partiellen differentialgleichungen beliebiger ordnung, Leipz. Berichte, Heft I, pp. 53–128 (1895); Gesammelte Abhandlungen, B.G. Teubner (Leipzig)—H. Aschehoung (Oslo), Bd. 4, paper IX (1929)

  31. Spencer, D.C.: Overdetermined systems of linear partial differential equations. Bull. Am. Math. Soc. 75, 179–239 (1969)

    Article  MATH  Google Scholar 

  32. The, D.: Contact geometry of hyperbolic equations of generic type. SIGMA 4, 058 (2008) 52 pages

    MathSciNet  Google Scholar 

  33. Zhang, F.: Matrix Theory. Basic Results and Techniques, Universitext. Springer, Berlin (1999)

    Google Scholar 

Download references

Acknowledgements

I thank V. Lychagin and A. Prasolov for helpful discussions. Some calculations in Sect. 4 were performed with Maple package DifferentialGeometry by I. Anderson. I am grateful for organizers of the conference SPT-2011 for hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Kruglikov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kruglikov, B. Symmetry, Compatibility and Exact Solutions of PDEs. Acta Appl Math 120, 219–236 (2012). https://doi.org/10.1007/s10440-012-9708-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-012-9708-0

Keywords

Navigation