Skip to main content
Log in

Remarks on the Cwikel–Lieb–Rozenblum and Lieb–Thirring Estimates for Schrödinger Operators on Riemannian Manifolds

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

Let M be a general complete Riemannian manifold and consider a Schrödinger operator −Δ+V on L 2(M). We prove Cwikel–Lieb–Rozenblum as well as Lieb–Thirring type estimates for −Δ+V. These estimates are given in terms of the potential and the heat kernel of the Laplacian on the manifold. Some of our results hold also for Schrödinger operators with complex-valued potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramov, A.A., Aslanyan, A., Davies, E.B.: Bounds on complex eigenvalues and resonances. J. Phys. A 34, 57–72 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bruneau, V., Ouhabaz, E.M.: Lieb–Thirring estimates for non-self-adjoint Schrödinger operators. J. Math. Phys. 49 (2008). doi:10.1063/1.29699028

  3. Chavel, I.: Eigenvalues in Riemannian Geometry. Academic Press, San Diego (1984)

    MATH  Google Scholar 

  4. Cycon, H.L., Froese, R.G., Kirsch, W., Simon, B.: Schrödinger Operators; With Application to Quantum Mechanics and Global Geometry. Texts and Monographs in Physics. Springer Study Edition. Springer, Berlin (1987)

    MATH  Google Scholar 

  5. Cwikel, M.: Weak type estimates for singular values and the number of bound states of Schrödinger operators. Ann. Math. 2(106), 93–100 (1977)

    Article  MathSciNet  Google Scholar 

  6. Davies, E.B.: Heat Kernels and Spectral Theory. Cambridge Tracts in Math., vol. 92. Cambridge University Press, Cambridge (1989)

    MATH  Google Scholar 

  7. Davies, E.B.: Non-Gaussian aspects of heat kernel behaviour. J. Lond. Math. Soc. (2) 55, 105–125 (1997)

    Article  MATH  Google Scholar 

  8. Frank, R., Laptev, A., Lieb, E.H., Seiringer, R.: Lieb–Thirring inequalities for Schrödinger operators with complex-valued potentials. Lett. Math. Phys. 77, 309–316 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Grigor’yan, A.: The heat equation on noncompact Riemannian manifolds. Math. USSR-Sb. 72, 47–77 (1992)

    Article  MathSciNet  Google Scholar 

  10. Hislop, P.D., Sigal, I.M.: Introduction to Spectral Theory. With applications to Schrödinger operators. Applied Mathematical Sciences, vol. 113. Springer, New York (1996)

    MATH  Google Scholar 

  11. Kato, T.: Perturbation Theory For Linear Operators, 2nd edn. Springer, Berlin (1980)

    MATH  Google Scholar 

  12. Levin, D., Solomyak, M.: The Rozenblum–Lieb–Cwikel inequality for Markov generators. J. Anal. Math. 71, 173–193 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  13. Laptev, A., Weidl, T.: Sharp Lieb–Thirring inequalities in high dimensions. Acta Math. 184, 87–111 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Levin, D.: On some new spectral estimates for Schrödinger-like operators. Cent. Eur. J. Math. 4, 123–137 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Li, P., Yau, S.T.: On the parabolic kernel of the Schrödinger operator. Acta. Math. 156, 153–201 (1986)

    Article  MathSciNet  Google Scholar 

  16. Lieb, E.H.: Bounds on the eigenvalues of the Laplace and Schrödinger operators. Bull. Am. Math. Soc. 82, 751–753 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lieb, E.H.: Kinetic energy bounds and their application to stability of matter. In: Schrödinger Operators. Lecture Notes in Phys., vol. 345, pp. 371–382. Springer, Berlin (1989)

    Chapter  Google Scholar 

  18. Ouhabaz, E.M.: Analysis of Heat Equations on Domains. London Mathematical Society Monographs Series, vol. 31. Princeton University Press, Princeton (2005)

    MATH  Google Scholar 

  19. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, vol. IV: Analysis of Operators. Academic Press, San Diego (1978)

    Google Scholar 

  20. Robinson, D.W., Sikora, A.: Analysis of degenerate elliptic operators of Grushin type. Math. Z. 260, 475–508 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. Rozenblum, G.V.: The distribution of the discrete spectrum for singular differential operators. Sov. Math., Dokl. 13, 245–249 (1972); translation from Dokl. Akad. Nauk SSSR 202, 1012–1015 (1972)

    Google Scholar 

  22. Rozenblum, G., Solomyak, M.: CLR-estimate for the generators of positivity preserving and positively dominated semi-groups. St. Petersbg. Math. J. 9(6), 1195–1211 (1997); translation from Algebra Anal. 9(6), 214–236 (1997)

    Google Scholar 

  23. Saloff-Coste, L.: Uniformly elliptic operators on Riemannian manifolds. J. Differ. Geom. 36, 417–450 (1992)

    MATH  MathSciNet  Google Scholar 

  24. Shubin, M.A.: Partial Differential Equations VII. Spectral Theory of Differential Operators. Encyclopaedia of Mathematical Sciences, vol. 64. Springer, Berlin (1994)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to El Maati Ouhabaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ouhabaz, E.M., Poupaud, C. Remarks on the Cwikel–Lieb–Rozenblum and Lieb–Thirring Estimates for Schrödinger Operators on Riemannian Manifolds. Acta Appl Math 110, 1449–1459 (2010). https://doi.org/10.1007/s10440-009-9519-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-009-9519-0

Keywords

Mathematics Subject Classification (2000)

Navigation