Skip to main content
Log in

Reconstructing Signals with Finite Rate of Innovation from Noisy Samples

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

A signal is said to have finite rate of innovation if it has a finite number of degrees of freedom per unit of time. Reconstructing signals with finite rate of innovation from their exact average samples has been studied in Sun (SIAM J. Math. Anal. 38, 1389–1422, 2006). In this paper, we consider the problem of reconstructing signals with finite rate of innovation from their average samples in the presence of deterministic and random noise. We develop an adaptive Tikhonov regularization approach to this reconstruction problem. Our simulation results demonstrate that our adaptive approach is robust against noise, is almost consistent in various sampling processes, and is also locally implementable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aldroubi, A., Gröchenig, K.: Nonuniform sampling and reconstruction in shift-invariant spaces. SIAM Rev. 43, 585–620 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aldroubi, A., Sun, Q., Tang, W.-S.: Convolution, average sampling and a Calderon resolution of the identity for shift-invariant spaces. J. Fourier Anal. Appl. 11, 215–244 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Blu, T., Dragotti, P.L., Veterli, M., Marziliano, P., Coulot, L.: Sparse sampling of signal innovations: theory, algorithms and performance bounds. IEEE Signal Process. Mag. 31, 31–40 (2008)

    Article  Google Scholar 

  4. Cramer, R.J.-M., Scholtz, R.A., Win, M.Z.: Evaluation of an ultra wide-band propagation channel. IEEE Trans. Antennas Propag. 50, 561–569 (2002)

    Article  Google Scholar 

  5. Dragotti, P.L., Vetterli, M., Blu, T.: Sampling moments and reconstructing signals of finite rate of innovation: Shannon meets Strans-Fix. IEEE Trans. Signal Process. 55, 1741–1757 (2007)

    Article  MathSciNet  Google Scholar 

  6. Eldar, Y., Unser, M.: Nonideal sampling and interpolation from noisy observations in shift-invariant spaces. IEEE Trans. Signal Process. 54, 2636–2651 (2006)

    Article  Google Scholar 

  7. Eldar, Y.C., Dvorkind, T.G.: A minimum squared-error framework for generalized sampling. IEEE Trans. Signal Process. 54, 2155–2167 (2006)

    Article  Google Scholar 

  8. Feichtinger, H.G., Gröchenig, K., Strohmer, T.: Efficient numerical methods in non-uniform sampling theory. Numer. Math. 69, 423–440 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  9. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  10. Gröchenig, K., Schwab, H.: Fast local reconstruction methods for nonuniform sampling in shift-invariant spaces. SIAM J. Matrix Anal. Appl. 24, 899–913 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hao, Y., Marziliano, P., Vetterli, M., Blu, T.: Compression of ECG as signal with finite rate of innovation. In: 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Shanghai, China, September 2005

  12. Jaffard, S.: Proprietes des matrices “bien localisees” pres de leur diagonale et quelques applications. Ann. Inst. Henri Poincaré Anal. Non-Lineaire 7, 61–76 (1990)

    MathSciNet  Google Scholar 

  13. Jerri, J.A.: The Shannon sampling theorem—its various extensions and applications: A tutorial review. Proc. IEEE 65, 1565–1596 (1977)

    Article  MATH  Google Scholar 

  14. Kusuma, J., Maravic, I., Vetterli, M.: Sampling with finite rate of innovation: Channel and timing estimation for UWB and GPS. In: IEEE Conference on Communication 2003, Achorage, AK (2003)

  15. Maravic, I., Vetterli, M.: Sampling and reconstruction of signals with finite rate of innovation in the presence of noise. IEEE Trans. Signal Process. 53, 2788–2805 (2005)

    Article  MathSciNet  Google Scholar 

  16. Marks II, R.J.: Introduction to Shannon Sampling and Interpolation Theory. Springer, Berlin (1991)

    MATH  Google Scholar 

  17. Marziliano, P., Vetterli, M., Blu, T.: Sampling and exact reconstruction of bandlimited signals with shot noise. IEEE Trans. Inform. Theory 52, 2230–2233 (2006)

    Article  MathSciNet  Google Scholar 

  18. Nashed, M.Z., Wahba, G.: Generalized inverses in reproducing kernel spaces: an approach to regularization of linear operator equations. SIAM J. Math. Anal. 5, 974–987 (1974)

    Article  MathSciNet  Google Scholar 

  19. Oraizi, H.: Application of the method of least squares to electromagnetic engineering problems. IEEE Antennas Propag. Mag. 48, 50–74 (2006)

    Article  Google Scholar 

  20. Rabinovich, V.S., Roch, S.: Reconstruction of input signals in time-varying filters. Numer. Funct. Anal. Optim. 27, 697–720 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  21. Ramani, S., De Ville, D.V., Unser, M.: Nonideal sampling and regularization theory. IEEE Trans. Signal Process. 56, 1055–1070 (2008)

    Article  MathSciNet  Google Scholar 

  22. Schaback, R., Wendland, H.: Kernel techniques: from machine learning to meshless methods. Acta Numer. 1–97 (2006)

  23. Schumaker, L.: Spline Functions: Basic Theory. Wiley, New York (1981)

    MATH  Google Scholar 

  24. Shukla, P., Dragotti, P.L.: Sampling schemes for multidimensional signals with finite rate of innovation. IEEE Trans. Signal Process. 55, 3670–3686 (2007)

    Article  MathSciNet  Google Scholar 

  25. Sjöstrand, J.: An algebra of pseudodifferential operators. Math. Res. Lett. 1, 185–192 (1994)

    MATH  MathSciNet  Google Scholar 

  26. Smale, S., Zhou, D.-X.: Shannon sampling and function reconstruction from point values. Bull. Am. Math. Soc. 41, 279–305 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  27. Smale, S., Zhou, D.-X.: Shannon sampling II: Connection to learning theory. Appl. Comput. Harmon. Anal. 19, 285–302 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  28. Sun, Q.: Non-uniform average sampling and reconstruction of signals with finite rate of innovation. SIAM J. Math. Anal. 38, 1389–1422 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  29. Sun, Q.: Wiener’s lemma for infinite matrices. Trans. Am. Math. Soc. 359, 3099–3123 (2007)

    Article  MATH  Google Scholar 

  30. Sun, Q.: Frames in spaces with finite rate of innovation. Adv. Comput. Math. 28, 301–329 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  31. Tarczynski, A.: Sensitivity of signal reconstruction. IEEE Signal Process. Lett. 4, 192–194 (1997)

    Article  Google Scholar 

  32. Unser, M.: Sampling—50 years after Shannon. Proc. IEEE 88, 569–587 (2000)

    Article  Google Scholar 

  33. Unser, M., Aldroubi, A.: A general sampling theory for nonideal acquisition devices. IEEE Trans. Signal Process. 42, 2915–2925 (1994)

    Article  Google Scholar 

  34. Vetterli, M., Marziliano, P., Blu, T.: Sampling signals with finite rate of innovation. IEEE Trans. Signal Process. 50, 1417–1428 (2002)

    Article  MathSciNet  Google Scholar 

  35. Wahba, G.: Spline Models for Observational Data. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 59. SIAM, Philadelphia (1990)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Bi.

Additional information

Research of the first author was supported in part by NSFC #10631080, and the Science Foundation of Guangdong Province #04205407 and #2007B090400091.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bi, N., Nashed, M.Z. & Sun, Q. Reconstructing Signals with Finite Rate of Innovation from Noisy Samples. Acta Appl Math 107, 339–372 (2009). https://doi.org/10.1007/s10440-009-9474-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-009-9474-9

Keywords

Navigation