Skip to main content
Log in

Modified Camassa–Holm and Degasperis–Procesi Equations Solved by Adomian’s Decomposition Method and Comparison with HPM and Exact Solutions

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

Many physical and scientific phenomena are modeled by nonlinear partial differential equations (NPDEs); it is difficult to handle nonlinear part of these equations. Recently some analytical methods are applied to solve such equations. In this work, modified Camassa–Holm and Degasperis–Procesi equation is studied. Adomian’s decomposition method (ADM) is applied to obtain solution of this equation. The results are compared to those of homotopy perturbation method (HPM) and exact solution. The study highlights the significant features of the employed method and its ability to handle nonlinear partial differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hu, X.-B., Wu, Y.-T.: Application of the Hirota bilinear formalism to a new integrable differential-difference equation. Phys. Lett. A 246(6), 523–529 (1998)

    Article  Google Scholar 

  2. Wang, M., Zhou, Y., Li, Z.: Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics. Phys. Lett. A 216(1–5), 67–75 (1996)

    Article  MATH  Google Scholar 

  3. Vakhnenko, V.O., Parkes, E.J., Morrison, A.J.: A Bäcklund transformation and the inverse scattering transform method for the generalised Vakhnenko equation. Chaos Solitons Fractals 17(4), 683–692 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Liao, S.J.: On the homotopy analysis method for nonlinear problems. Appl. Math. Comput. 147(2), 499–513 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Wazwaz, A.M.: Solitary wave solutions for modified forms of Degasperis–Procesi and Camassa–Holm equations. Phys. Lett. A 352(6), 500–504 (2006)

    Article  MathSciNet  Google Scholar 

  6. He, J.H.: Homotopy perturbation technique. Comput. Methods Appl. Mech. Eng. 178(3–4), 257–262 (1999)

    Article  MATH  Google Scholar 

  7. Ganji, D.D., Sadighi, A.: Application of homotopy-perturbation and variational iteration methods to nonlinear heat transfer and porous media equations. J. Comput. Appl. Math. 207(1), 24–34 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ganji, D.D.: The application of He’s homotopy perturbation method to nonlinear equations arising in heat transfer. Phys. Lett. A 355(4–5), 337–341 (2006)

    Article  MathSciNet  Google Scholar 

  9. Ganji, D.D., Rafei, M.: Solitary wave solutions for a generalized Hirota–Satsuma coupled KdV equation by homotopy perturbation method. Phys. Lett. A 356(2), 131–137 (2006)

    Article  MathSciNet  Google Scholar 

  10. Ganji, D.D.: Assessment of homotopy–perturbation and perturbation methods in heat radiation equations. Int. Commun. Heat Mass Transf. 33(3), 391–400 (2006)

    Article  MathSciNet  Google Scholar 

  11. Zhang, B.-g., Li, S.-y., Liu, Z.-r.: Homotopy perturbation method for modified Camassa–Holm and Degasperis–Procesi equations. Phys. Lett. A 372(11), 1867–1872 (2008)

    Article  MathSciNet  Google Scholar 

  12. Ganji, D.D., Jannatabadi, M., Mohseni, E.: Application of He’s variational iteration method to nonlinear Jaulent–Miodek equations and comparing it with ADM. J. Comput. Appl. Math. 207(1), 35–45 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Rafei, M., Ganji, D.D., Daniali, H., Pashaei, H.: The variational iteration method for nonlinear oscillators with discontinuities. J. Sound Vib. 305(4–5), 614–620 (2007)

    Article  MathSciNet  Google Scholar 

  14. Tari, H., Ganji, D.D., Babazadeh, H.: The application of He’s variational iteration method to nonlinear equations arising in heat transfer. Phys. Lett. A 363(3), 213–217 (2007)

    Article  Google Scholar 

  15. Rafei, M., Daniali, H., Ganji, D.D.: Variational iteration method for solving the epidemic model and the prey and predator problem. Appl. Math. Comput. 186(2), 1701–1709 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Varedi, S.M., Hosseini, M.J., Rahimi, M., Ganji, D.D.: He’s variational iteration method for solving a semi-linear inverse parabolic equation. Phys. Lett. A 370(3–4), 275–280 (2007)

    Article  MathSciNet  Google Scholar 

  17. Ganji, D.D., Nourollahi, M., Mohseni, E.: Application of He’s methods to nonlinear chemistry problems. Comput. Math. Appl. 54(7–8), 1122–1132 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ganji, D.D., Sadeghi, E.M.M., Safari, M.: Application of He’s variational iteration method and Adomian’s decomposition method to Prochhammer–Chree equation. Mod. Phys. B (2008, accepted)

  19. Esmaili, Q., Ramiar, A., Alizadeh, E., Ganji, D.D.: An approximation of the analytical solution of the Jeffery–Hamel flow by decomposition method. Phys. Lett. A 372(19), 3434–3439 (2008)

    Article  Google Scholar 

  20. Ghosh, S., Roy, A., Roy, D.: An adaptation of Adomian decomposition for numeric–analytic integration of strongly nonlinear and chaotic oscillators. Comput. Methods Appl. Mech. Eng. 196(4–6), 1133–1153 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Adomian, G.: A review of the decomposition method and some recent results for nonlinear equations. Comput. Math. Appl. 21(5), 101–127 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  22. Adomian, G.: 24 Solution of physical problems by decomposition. Comput. Math. Appl. 27(9–10), 145–154 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  23. Adomian, G.: Solutions of nonlinear P.D.E. Appl. Math. Lett. 11(3), 121–123 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  24. Wazwaz, A.M.: Partial Differential Equations: Methods and Applications. Balkema, Rotterdam (2002)

    MATH  Google Scholar 

  25. Wazwaz, A.M.: A First Course in Integral Equations. World Scientific, Singapore (1997)

    MATH  Google Scholar 

  26. Wazwaz, A.M.: A new algorithm for calculating Adomian polynomials for nonlinear operators. Appl. Math. Comput. 111(1), 33–51 (2000)

    Article  MathSciNet  Google Scholar 

  27. Abdulaziz, N.F.M.N., Hashim, I., Noorani, M.S.M.: Further accuracy tests on Adomian decomposition method for chaotic systems. Chaos Solitons Fractals 36(5), 1405–1411 (2008)

    Article  Google Scholar 

  28. Hu, Y., Luo, Y., Lu, Z.: Analytical solution of the linear fractional differential equation by Adomian decomposition method. J. Comput. Appl. Math. 215(1), 220–229 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  29. Soliman, A.A., Abdou, M.A.: The decomposition method for solving the coupled modified KdV equations. Math. Comput. Model. 47(9–10), 1035–1041 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  30. Ebaid, A.: Exact solutions for the generalized Klein–Gordon equation via a transformation and Exp-function method and comparison with Adomian’s method. J. Comput. Appl. Math. (2008, in press) doi:10.1016/j.cam.2008.01.010

  31. Liu, Z., Ouyang, Z.: A note on solitary waves for modified forms of Camassa–Holm and Degasperis–Procesi equations. Phys. Lett. A 366(4–5), 377–381 (2007)

    Article  Google Scholar 

  32. Wazwaz, A.M.: New solitary wave solutions to the modified forms of Degasperis–Procesi and Camassa–Holm equations. Appl. Math. Comput. 186(1), 130–141 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. Ganji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganji, D.D., Sadeghi, E.M.M. & Rahmat, M.G. Modified Camassa–Holm and Degasperis–Procesi Equations Solved by Adomian’s Decomposition Method and Comparison with HPM and Exact Solutions. Acta Appl Math 104, 303–311 (2008). https://doi.org/10.1007/s10440-008-9258-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-008-9258-7

Keywords

Navigation