Skip to main content
Log in

A Computational Investigation of the Effects of Temporal Synchronization of Left Ventricular Assist Device Speed Modulation with the Cardiac Cycle on Intraventricular Hemodynamics

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Patients with advanced heart failure are implanted with a left ventricular assist device (LVAD) as a bridge-to-transplantation or destination therapy. Despite advances in pump design, the risk of stroke remains high. LVAD implantation significantly alters intraventricular hemodynamics, where regions of stagnation or elevated shear stresses promote thrombus formation. Third generation pumps incorporate a pulsatility mode that modulates rotational speed of the pump to enhance in-pump washout. We investigated how the timing of the pulsatility mode with the cardiac cycle affects intraventricular hemodynamic factors linked to thrombus formation. Computational fluid dynamics simulations with Lagrangian particle tracking to model platelet behavior in a patient-specific left ventricle captured altered intraventricular hemodynamics due to LVAD implantation. HeartMate 3 incorporates a pulsatility mode that modulates the speed of the pump every two seconds. Four different timings of this pulsatility mode with respect to the cardiac cycle were investigated. A strong jet formed between the mitral valve and inflow cannula. Blood stagnated in the left ventricular outflow tract beneath a closed aortic valve, in the near-wall regions off-axis of the jet, and in a large counterrotating vortex near the anterior wall. Computational results showed good agreement with particle image velocimetry results. Synchronization of the pulsatility mode with peak systole decreased stasis, reflected in the intraventricular washout of virtual contrast and Lagrangian particles over time. Temporal synchronization of HeartMate 3 pulsatility with the cardiac cycle reduces intraventricular stasis and could be beneficial for decreasing thrombogenicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tsao, C. W., A. W. Aday, Z. I. Almarzooq, A. Alonso, A. Z. Beaton, M. S. Bittencourt, A. K. Boehme, A. E. Buxton, A. P. Carson, Y. Commodore-Mensah, M. S. V. Elkind, K. R. Evenson, C. Eze-Nliam, J. F. Ferguson, G. Generoso, J. E. Ho, R. Kalani, S. S. Khan, B. M. Kissela, K. L. Knutson, D. A. Levine, T. T. Lewis, J. Liu, M. S. Loop, J. Ma, M. E. Mussolino, S. D. Navaneethan, A. M. Perak, R. Poudel, M. Rezk-Hanna, G. A. Roth, E. B. Schroeder, S. H. Shah, E. L. Thacker, L. B. VanWagner, S. S. Virani, J. H. Voecks, N.-Y. Wang, K. Yaffe, and S. S. Martin. Heart disease and stroke statistics-2022 update: A report from the American Heart Association. Circulation. 2022. https://doi.org/10.1161/CIR.0000000000001052.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Mancini, D., and P. C. Colombo. Left ventricular assist devices: A rapidly evolving alternative to transplant. J. Am. Coll. Cardiol. 65:2542–2555, 2015. https://doi.org/10.1016/j.jacc.2015.04.039.

    Article  PubMed  Google Scholar 

  3. McDonagh, T. A., M. Metra, M. Adamo, R. S. Gardner, A. Baumbach, M. Böhm, H. Burri, J. Butler, J. Čelutkienė, O. Chioncel, J. G. F. Cleland, A. J. S. Coats, M. G. Crespo-Leiro, D. Farmakis, M. Gilard, S. Heymans, A. W. Hoes, T. Jaarsma, E. A. Jankowska, M. Lainscak, C. S. P. Lam, A. R. Lyon, J. J. V. McMurray, A. Mebazaa, R. Mindham, C. Muneretto, M. F. Piepoli, S. Price, G. M. C. Rosano, F. Ruschitzka, A. K. Skibelund, R. A. Boer, P. C. Schulze, M. Abdelhamid, V. Aboyans, S. Adamopoulos, S. D. Anker, E. Arbelo, R. Asteggiano, J. Bauersachs, A. Bayes-Genis, M. A. Borger, W. Budts, M. Cikes, K. Damman, V. Delgado, P. Dendale, P. Dilaveris, H. Drexel, J. Ezekowitz, V. Falk, L. Fauchier, G. Filippatos, A. Fraser, N. Frey, C. P. Gale, F. Gustafsson, J. Harris, B. Iung, S. Janssens, M. Jessup, A. Konradi, D. Kotecha, E. Lambrinou, P. Lancellotti, U. Landmesser, C. Leclercq, B. S. Lewis, F. Leyva, A. Linhart, M. L. Løchen, L. H. Lund, D. Mancini, J. Masip, D. Milicic, C. Mueller, H. Nef, J. C. Nielsen, L. Neubeck, M. Noutsias, S. E. Petersen, A. S. Petronio, P. Ponikowski, E. Prescott, A. Rakisheva, D. J. Richter, E. Schlyakhto, P. Seferovic, M. Senni, M. Sitges, M. Sousa-Uva, C. G. Tocchetti, R. M. Touyz, C. Tschoepe, and J. Waltenberger. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. J. Heart Fail. 24:4–131, 2022. https://doi.org/10.1002/EJHF.2333.

    Article  PubMed  Google Scholar 

  4. Yancy, C. W., M. Jessup, B. Bozkurt, J. Butler, D. E. Casey, M. H. Drazner, G. C. Fonarow, S. A. Geraci, T. Horwich, J. L. Januzzi, M. R. Johnson, E. K. Kasper, W. C. Levy, F. A. Masoudi, P. E. McBride, J. J. V. McMurray, J. E. Mitchell, P. N. Peterson, B. Riegel, F. Sam, L. W. Stevenson, W. H. W. Tang, E. J. Tsai, and B. L. Wilkoff. 2013 ACCF/AHA guideline for the management of heart failure: Executive summary. Circulation. 128:1810–1852, 2013. https://doi.org/10.1161/CIR.0B013E31829E8807.

    Article  PubMed  Google Scholar 

  5. Kormos, R. L., J. Cowger, F. Pagani, J. J. Teuteberg, D. J. Goldstein, J. P. Jacobs, R. S. Higgins, L. W. Stevenson, J. Stehlik, P. Atluri, K. L. Grady, and J. K. Kirklin. The Society of Thoracic Surgeons Intermacs database annual report: Evolving indications, outcomes, and scientific partnerships. J. Heart Lung Transplant. 38:114–126, 2019. https://doi.org/10.1016/j.healun.2018.11.013.

    Article  PubMed  Google Scholar 

  6. Adesiyun, T. A., R. C. McLean, R. J. Tedford, G. J. R. Whitman, C. M. Sciortino, J. V. Conte, A. S. Shah, and S. D. Russell. Long-term follow-up of continuous flow left ventricular assist devices: Complications and predisposing risk factors. Int. J. Artif. Organs. 40:622–628, 2017. https://doi.org/10.5301/IJAO.5000628.

    Article  PubMed  Google Scholar 

  7. Li, S., J. A. Beckman, R. Cheng, C. Ibeh, C. J. Creutzfeldt, J. Bjelkengren, J. Herrington, A. Stempien-Otero, S. Lin, W. C. Levy, D. Fishbein, K. J. Koomalsingh, D. Zimpfer, M. S. Slaughter, A. Aliseda, D. Tirschwell, and C. Mahr. Comparison of neurologic event rates among HeartMate II, HeartMate 3, and HVAD. ASAIO J. 66:620–624, 2020. https://doi.org/10.1097/MAT.0000000000001084.

    Article  PubMed  Google Scholar 

  8. Mehra, M. R., G. C. Stewart, and P. A. Uber. The vexing problem of thrombosis in long-term mechanical circulatory support. J. Heart Lung Transplant. 33:1–11, 2014. https://doi.org/10.1016/J.HEALUN.2013.12.002.

    Article  PubMed  Google Scholar 

  9. Petrucci, R. J., J. G. Rogers, L. Blue, C. Gallagher, S. D. Russell, D. Dordunoo, B. E. Jaski, S. Chillcott, B. Sun, T. L. Yanssens, A. Tatooles, L. Koundakjian, D. J. Farrar, and M. S. Slaughter. Neurocognitive function in destination therapy patients receiving continuous-flow vs pulsatile-flow left ventricular assist device support. J. Heart Lung Transplant. 31:27–36, 2012. https://doi.org/10.1016/J.HEALUN.2011.10.012.

    Article  PubMed  Google Scholar 

  10. Netuka, I., and M. R. Mehra. Ischemic stroke and subsequent thrombosis within a HeartMate 3 left ventricular assist system: A cautionary tale. J. Heart Lung Transplant. 37:170–172, 2018. https://doi.org/10.1016/j.healun.2017.11.002.

    Article  PubMed  Google Scholar 

  11. Barac, Y. D., A. Nevo, J. N. Schroder, C. A. Milano, and M. A. Daneshmand. LVAD outflow graft role in pump thrombosis. ASAIO J. 66:128–131, 2020. https://doi.org/10.1097/MAT.0000000000000936.

    Article  PubMed  Google Scholar 

  12. Estep, J. D., R. F. Stainback, S. H. Little, G. Torre, and W. A. Zoghbi. The role of echocardiography and other imaging modalities in patients with left ventricular assist devices. JACC Cardiovasc. Imaging. 3:1049–1064, 2010. https://doi.org/10.1016/j.jcmg.2010.07.012.

    Article  PubMed  Google Scholar 

  13. Glass, C. H., A. Christakis, G. A. Fishbein, J. C. Watkins, K. C. Strickland, R. N. Mitchell, and R. F. Padera. Thrombus on the inflow cannula of the HeartWare HVAD: an update. Cardiovasc. Pathol. 38:14–20, 2019. https://doi.org/10.1016/j.carpath.2018.09.002.

    Article  PubMed  Google Scholar 

  14. Slaughter, M. S., F. D. Pagani, J. G. Rogers, L. W. Miller, B. Sun, S. D. Russell, R. C. Starling, L. Chen, A. J. Boyle, S. Chillcott, R. M. Adamson, M. S. Blood, M. T. Camacho, K. A. Idrissi, M. Petty, M. Sobieski, S. Wright, T. J. Myers, and D. J. Farrar. Clinical management of continuous-flow left ventricular assist devices in advanced heart failure. J. Heart Lung Transplant. 29:1–39, 2010. https://doi.org/10.1016/j.healun.2010.01.011.

    Article  Google Scholar 

  15. May-Newman, K., Y. K. Wong, R. Adamson, P. Hoagland, V. Vu, and W. Dembitsky. Thromboembolism is linked to intraventricular flow stasis in a patient supported with a left ventricle assist device. ASAIO J. 59:452–455, 2013. https://doi.org/10.1097/MAT.0B013E318299FCED.

    Article  CAS  PubMed  Google Scholar 

  16. Fried, J., A. R. Garan, S. Shames, A. Masoumi, M. Yuzefpolskaya, K. Takeda, H. Takayama, N. Uriel, Y. Naka, P. C. Colombo, and V. K. Topkara. Aortic root thrombosis in patients supported with continuous-flow left ventricular assist devices. J. Heart Lung Transplant. 37:1425–1432, 2018. https://doi.org/10.1016/J.HEALUN.2018.07.012.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Carey, M. R., D. Marshall, K. Clerkin, R. Laracuente, J. Sanchez, S. S. Jain, J. K. Raikhelkar, J. S. Leb, Y. Kaku, M. Yuzefpolskaya, Y. Naka, P. C. Colombo, G. T. Sayer, K. Takeda, N. Uriel, V. K. Topkara, and J. A. Fried. Aortic root thrombosis in patients with HeartMate 3 left ventricular assist device support. J. Heart Lung Transplant. 2023. https://doi.org/10.1016/J.HEALUN.2023.08.023.

    Article  PubMed  Google Scholar 

  18. Chassagne, F., M. Miramontes, V. K. Chivukula, S. Li, J. A. Beckman, C. Mahr, and A. Aliseda. In vitro investigation of the effect of left ventricular assist device speed and pulsatility mode on intraventricular hemodynamics. Ann. Biomed. Eng. 49:1318–1332, 2021. https://doi.org/10.1007/S10439-020-02669-9.

    Article  PubMed  Google Scholar 

  19. Rossini, L., O. O. Braun, M. Brambatti, Y. Benito, A. Mizeracki, M. Miramontes, C. Nguyen, P. Martinez-Legazpi, S. Almeida, M. Kraushaar, V. Vu, K. May-Newman, J. Bermejo, E. D. Adler, A. M. Kahn, and J. C. D. Alamo. Intraventricular flow patterns in patients treated with left ventricular assist devices. ASAIO J. 67:74–83, 2021. https://doi.org/10.1097/MAT.0000000000001158.

    Article  PubMed  Google Scholar 

  20. Ortiz, S., V. Vu, R. Montes, and K. May-Newman. Left ventricular flow dynamics with the HeartMate 3 left ventricular assist device: Effect of inflow cannula position and speed modulation. ASAIO J. 67:1301–1311, 2021. https://doi.org/10.1097/MAT.0000000000001523.

    Article  PubMed  Google Scholar 

  21. Wong, K., G. Samaroo, I. Ling, W. Dembitsky, R. Adamson, J. C. Álamo, and K. May-Newman. Intraventricular flow patterns and stasis in the LVAD-assisted heart. J. Biomech. 47:1485–1494, 2014. https://doi.org/10.1016/j.jbiomech.2013.12.031.

    Article  CAS  PubMed  Google Scholar 

  22. Viola, F., E. Jermyn, J. Warnock, G. Querzoli, and R. Verzicco. Left ventricular hemodynamics with an implanted assist device: An in vitro fluid dynamics study. Ann. Biomed. Eng. 47:1799–1814, 2019. https://doi.org/10.1007/S10439-019-02273-6.

    Article  PubMed  Google Scholar 

  23. Aigner, P., M. Schweiger, K. Fraser, Y. Choi, F. Lemme, N. Cesarovic, U. Kertzscher, H. Schima, M. Hübler, and M. Granegger. Ventricular flow field visualization during mechanical circulatory support in the assisted isolated beating heart. Ann. Biomed. Eng. 48:794–804, 2020. https://doi.org/10.1007/s10439-019-02406-x.

    Article  CAS  PubMed  Google Scholar 

  24. Da Rocha E Silva, J., A. L. Meyer, S. Eifert, J. Garbade, F. W. Mohr, and M. Strueber. Influence of aortic valve opening in patients with aortic insufficiency after left ventricular assist device implantation. Eur. J. Cardiothorac. Surg. 49:784–787, 2016. https://doi.org/10.1093/EJCTS/EZV204.

    Article  PubMed  Google Scholar 

  25. John, R., K. Mantz, P. Eckman, A. Rose, and K. May-Newman. Aortic valve pathophysiology during left ventricular assist device support. J. Heart Lung Transplant. 29:1321–1329, 2010. https://doi.org/10.1016/J.HEALUN.2010.06.006.

    Article  PubMed  Google Scholar 

  26. Clifford, R., D. Robson, C. Gross, F. Moscato, H. Schima, P. Jansz, P. S. Macdonald, and C. S. Hayward. Beat-to-beat detection of aortic valve opening in HeartWare left ventricular assist device patients. Artif. Organs. 43:458–466, 2019. https://doi.org/10.1111/AOR.13381.

    Article  PubMed  Google Scholar 

  27. Lowe, G. D. O. Virchow’s triad revisited: Abnormal flow. Pathophysiol. Haemost. Thromb. 33:455–457, 2003. https://doi.org/10.1159/000083845.

    Article  PubMed  Google Scholar 

  28. Shear induced aggregation and lysis of platelets. S.P. Hung, R.M.J.J.H.S. T.C.; Hochmith. Transactions - American Society for Artificial Internal Organs. 22:285–290, 1976.

    Google Scholar 

  29. Ramstack, J. M., L. Zuckerman, and L. F. Mockros. Shear-induced activation of platelets. J. Biomech. 12:113–125, 1979. https://doi.org/10.1016/0021-9290(79)90150-7.

    Article  CAS  PubMed  Google Scholar 

  30. Shankaran, H., P. Alexandridis, and S. Neelamegham. Aspects of hydrodynamic shear regulating shear-induced platelet activation and self-association of von Willebrand factor in suspension. Blood. 101:2637–2645, 2003. https://doi.org/10.1182/BLOOD-2002-05-1550.

    Article  CAS  PubMed  Google Scholar 

  31. Chiu, W. C., Y. Alemu, A. J. Mclarty, S. Einav, M. J. Slepian, and D. Bluestein. Ventricular assist device implantation configurations impact overall mechanical circulatory support system thrombogenic potential. ASAIO J. 63:285, 2017. https://doi.org/10.1097/MAT.0000000000000488.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Girdhar, G., M. Xenos, Y. Alemu, W.-C. Chiu, and B. E. Lynch. Device thrombogenicity emulation: A novel method for optimizing mechanical circulatory support device thromboresistance. PLoS ONE. 7:32463, 2012. https://doi.org/10.1371/journal.pone.0032463.

    Article  CAS  Google Scholar 

  33. Chivukula, V. K., J. A. Beckman, A. R. Prisco, T. Dardas, S. Lin, J. W. Smith, N. A. Mokadam, A. Aliseda, and C. Mahr. Left ventricular assist device inflow cannula angle and thrombosis risk. Circ. Heart Fail. 2018. https://doi.org/10.1161/CIRCHEARTFAILURE.117.004325.

    Article  PubMed  Google Scholar 

  34. Chivukula, V. K., J. A. Beckman, S. Li, S. C. Masri, W. C. Levy, S. Lin, R. K. Cheng, S. D. Farris, G. Wood, T. F. Dardas, J. N. Kirkpatrick, K. Koomalsingh, D. Zimpfer, G. B. MacKensen, F. Chassagne, C. Mahr, and A. Aliseda. Left ventricular assist device inflow cannula insertion depth influences thrombosis risk. ASAIO J. 2020. https://doi.org/10.1097/MAT.0000000000001068.

    Article  PubMed  Google Scholar 

  35. Aliseda, A., V. K. Chivukula, P. McGah, A. R. Prisco, J. A. Beckman, G. J. M. Garcia, N. A. Mokadam, and C. Mahr. LVAD outflow graft angle and thrombosis risk. ASAIO J. 63:14, 2017. https://doi.org/10.1097/MAT.0000000000000443.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bourque, K., C. Cotter, C. Dague, D. Harjes, O. Dur, J. Duhamel, K. Spink, K. Walsh, and E. Burke. Design rationale and preclinical evaluation of the HeartMate 3 left ventricular assist system for hemocompatibility. ASAIO J. 62:375–383, 2016. https://doi.org/10.1097/MAT.0000000000000388.

    Article  CAS  PubMed  Google Scholar 

  37. Larose, J. A., D. Tamez, M. Ashenuga, and C. Reyes. Design concepts and principle of operation of the HeartWare ventricular assist system. ASAIO J. 56:285–289, 2010. https://doi.org/10.1097/MAT.0B013E3181DFBAB5.

    Article  PubMed  Google Scholar 

  38. Liao, S., E. L. Wu, M. Neidlin, Z. Li, B. Simpson, and S. D. Gregory. The influence of rotary blood pump speed modulation on the risk of intraventricular thrombosis. Artif. Organs. 42:943–953, 2018. https://doi.org/10.1111/AOR.13330.

    Article  PubMed  Google Scholar 

  39. Khienwad, T., A. Maurer, M. Ghodrati, T. Schlöglhofer, F. Moscato, M. Stoiber, H. Schima, and P. Aigner. Effect of timings of the Lavare cycle on the ventricular washout in an in vitro flow visualization setup. ASAIO J. 67:517–528, 2021. https://doi.org/10.1097/MAT.0000000000001269.

    Article  PubMed  Google Scholar 

  40. Chassagne, F., J. A. Beckman, S. Li, C. Mahr, and A. Aliseda. In vitro investigation of the effect of the timing of left ventricular assist device speed modulation on intraventricular flow patterns. ASAIO J. 69:533–543, 2023. https://doi.org/10.1097/MAT.0000000000001893.

    Article  CAS  PubMed  Google Scholar 

  41. Mccormick, M., D. Nordsletten, P. Lamata, and N. P. Smith. Computational analysis of the importance of flow synchrony for cardiac ventricular assist devices. Comput. Biol. Med. 49:83–94, 2014. https://doi.org/10.1016/j.compbiomed.2014.03.013.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Boraschi, A., S. Bozzi, B. Thamsen, M. Granegger, L. Wiegmann, F. Pappalardo, M. J. Slepian, V. Kurtcuoglu, A. Redaelli, D. D. Zélicourt, and F. Consolo. Thrombotic risk of rotor speed modulation regimes of contemporary centrifugal continuous-flow left ventricular assist devices. ASAIO J. 67:737–745, 2021. https://doi.org/10.1097/MAT.0000000000001297.

    Article  PubMed  Google Scholar 

  43. Fang, P., J. Du, A. Boraschi, S. Bozzi, A. Redaelli, M. S. Daners, V. Kurtcuoglu, F. Consolo, and D. Zélicourt. Insights into the low rate of in-pump thrombosis with the HeartMate 3: Does the artificial pulse improve washout? Frontiers in Cardiovascular Medicine.9:775780, 2022. https://doi.org/10.3389/FCVM.2022.775780.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wiegmann, L., B. Thamsen, D. Zélicourt, M. Granegger, S. Boës, M. S. Daners, M. Meboldt, and V. Kurtcuoglu. Fluid dynamics in the HeartMate 3: Influence of the artificial pulse feature and residual cardiac pulsation. Artif. Organs. 43:363–376, 2019. https://doi.org/10.1111/aor.13346.

    Article  PubMed  Google Scholar 

  45. Zimpfer, D., M. Strueber, P. Aigner, J. D. Schmitto, A. E. Fiane, R. Larbalestier, S. Tsui, P. Jansz, A. Simon, S. Schueler, F. Moscato, and H. Schima. Evaluation of the HeartWare ventricular assist device Lavare cycle in a particle image velocimetry model and in clinical practice. Eur. J. Cardiothorac. Surg. 50:839–848, 2016. https://doi.org/10.1093/ejcts/ezw232.

    Article  PubMed  Google Scholar 

  46. Colombo, P. C., M. R. Mehra, D. J. Goldstein, J. D. Estep, C. Salerno, U. P. Jorde, J. A. Cowger, J. C. Cleveland, N. Uriel, G. Sayer, E. R. Skipper, F. X. Downey, M. Ono, R. Hooker, A. C. Anyanwu, M. M. Givertz, C. Mahr, I. Topuria, S. I. Somo, D. L. Crandall, and D. A. Horstmanshof. Comprehensive analysis of stroke in the long-term cohort of the MOMENTUM 3 study. Circulation. 139:155–168, 2019. https://doi.org/10.1161/CIRCULATIONAHA.118.037231.

    Article  PubMed  Google Scholar 

  47. Mueller, M., C. Hoermandinger, G. Richter, J. Mulzer, D. Tsyganenko, T. Krabatsch, C. Starck, J. Stein, F. Schoenrath, V. Falk, and E. Potapov. Retrospective 1-year outcome follow-up in 200 patients supported with HeartMate 3 and HeartWare left ventricular assist devices in a single centre. Eur. J. Cardiothorac. Surg. 57:1160–1165, 2020. https://doi.org/10.1093/ejcts/ezaa017.

    Article  PubMed  Google Scholar 

  48. Sorensen, E. N., L. M. Dees, D. J. Kaczorowski, and E. D. Feller. The HeartWare Lavare cycle: A cautionary tale. ASAIO J. 66:114–116, 2020. https://doi.org/10.1097/MAT.0000000000001161.

    Article  Google Scholar 

  49. Ghodrati, M., T. Khienwad, A. Maurer, F. Moscato, F. Zonta, H. Schima, and P. Aigner. Validation of numerically simulated ventricular flow patterns during left ventricular assist device support. Int. J. Artif. Organs. 44:30–38, 2021. https://doi.org/10.1177/0391398820904056.

    Article  CAS  PubMed  Google Scholar 

  50. Rayz, V. L., L. Boussel, L. Ge, J. R. Leach, A. J. Martin, M. T. Lawton, C. Mcculloch, and D. Saloner. Flow residence time and regions of intraluminal thrombus deposition in intracranial aneurysms. Ann. Biomed. Eng. 38:3058–3069, 2010. https://doi.org/10.1007/s10439-010-0065-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Prisco, A.R., Aliseda, A., Beckman, J.A., Mokadam, N.A., Mahr, C. and Garcia, G.J. Impact of LVAD implantation site on ventricular blood stagnation. ASAIO J. 63:392–400, 2017. https://doi.org/10.1097/MAT.0000000000000503.

    Article  Google Scholar 

  52. Hariharan, P., M. Giarra, V. Reddy, S. W. Day, K. B. Manning, S. Deutsch, S. F. C. Stewart, M. R. Myers, M. R. Berman, G. W. Burgreen, E. G. Paterson, and R. A. Malinauskas. Multilaboratory particle image velocimetry analysis of the FDA benchmark nozzle model to support validation of computational fluid dynamics simulations. J. Biomech. Eng. 2011. https://doi.org/10.1115/1.4003440/450920.

    Article  PubMed  Google Scholar 

  53. Hendabadi, S., J. Bermejo, Y. Benito, R. Yotti, F. Fernández-Avilés, J. C. D. Álamo, and S. C. Shadden. Topology of blood transport in the human left ventricle by novel processing of Doppler echocardiography. Ann. Biomed. Eng. 41:2603–2616, 2013. https://doi.org/10.1007/s10439-013-0853-z.

    Article  PubMed  Google Scholar 

  54. Dobarro, D., M. Urban, K. Booth, N. Wrightson, J. Castrodeza, J. Jungschleger, N. Robinson-Smith, A. Woods, G. Parry, S. Schueler, and G. A. Macgowan. Impact of aortic valve closure on adverse events and outcomes with the HeartWare ventricular assist device. J. Heart Lung Transplant. 36:42–49, 2016. https://doi.org/10.1016/j.healun.2016.08.006.

    Article  PubMed  Google Scholar 

  55. Tolpen, S., J. Janmaat, C. Reider, F. Kallel, D. Farrar, and K. May-Newman. Programmed speed reduction enables aortic valve opening and increased pulsatility in the LVAD-assisted heart. ASAIO J. 61:540–547, 2015. https://doi.org/10.1097/MAT.0000000000000241.

    Article  PubMed  Google Scholar 

  56. Bruckner, B. A., D. J. DiBardino, Q. Ning, A. Adeboygeun, K. Mahmoud, J. Valdes, J. Eze, P. M. Allison, D. A. Cooley, I. D. Gregoric, and O. H. Frazier. High incidence of thromboembolic events in left ventricular assist device patients treated with recombinant activated factor VII. J. Heart Lung Transplant. 28:785–790, 2009. https://doi.org/10.1016/J.HEALUN.2009.04.028.

    Article  PubMed  Google Scholar 

  57. Liao, S., M. Neidlin, Z. Li, B. Simpson, and S. D. Gregory. Ventricular flow dynamics with varying LVAD inflow cannula lengths: In-silico evaluation in a multiscale model. J. Biomech. 72:106–115, 2018. https://doi.org/10.1016/j.jbiomech.2018.02.038.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was funded by the National Science Foundation Graduate Research Fellowship Program (NSF GRFP) AHRQ (Grant No. 1 R18 HS 026690; Funder ID: 10.13039/100000133). Experimental work has been financially supported by the Locke Trust through a gift to the Division of Cardiology of the University of Washington and the American Heart Association via a Postdoctoral fellowship (19POST34450082). This work was facilitated through the use of advanced computational, storage, and networking infrastructure provided by the Hyak supercomputer system and funded by the Student Technology Fund at the University of Washington.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Straccia.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Additional information

Associate Editor Stefan M. Duma oversaw review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

See Figs. 9 and 10.

Fig. 9
figure 9

Flow rates over time for four timings of the pulsatility mode synchronized with the cardiac cycle

Fig. 10
figure 10

Bland-Altman plots of differences in CFD and PIV velocity magnitude for speed modulation synchronized with systole in the posterior–anterior and left–right views a at peak diastole, b at peak systole, c at low RPM and d at high RPM in the pulsatility mode with the median (labeled in bold face) and 95% confidence intervals (labeled with italics) identified with dashed lines

Diversity Statement

Recent work in several fields of science has identified a bias in citation practices such that papers from women and other minority scholars are undercited relative to the number of papers in the field. We recognize this bias and have worked diligently to ensure that we are referencing appropriate papers with fair gender and racial author inclusion.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Straccia, A., Chassagne, F., Barbour, M.C. et al. A Computational Investigation of the Effects of Temporal Synchronization of Left Ventricular Assist Device Speed Modulation with the Cardiac Cycle on Intraventricular Hemodynamics. Ann Biomed Eng (2024). https://doi.org/10.1007/s10439-024-03489-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10439-024-03489-x

Keywords

Navigation