Skip to main content

Advertisement

Log in

Sterilization of Human Amniotic Membrane Using an Ozone Hydrodynamic System

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Human amniotic membrane (hAM) is an important biomaterial for Tissue Engineering, due to its great regenerative properties and potential use as a scaffold. The most used procedure to sterilize biomaterials is gamma-irradiation, but this method can affect several properties, causing damage to the structure and reducing the growth factors. The present work evaluated the efficiency of a new method based on ozonated dynamic water for hAM sterilization. HAM fragments were experimentally contaminated with Staphylococcus aureus, Escherichia coli, Candida albicans, Staphylococcus epidermidis, and Clostridium sporogenes (106 CFU/mL) and submitted to sterilization process for 5, 10 and 15 min. The analyses did not reveal microbial activity after 10 min for S. aureus and C. sporogenes and after 15 min for E. coli and S. epidermidis. The microbial activity of C. albicans was reduced with the exposure time increase, but the evaluated time was insufficient for complete sterilization. The depyrogenation process was investigated for different ozonation times (15, 20, 25, 30, and 35 min) to evaluate the ozone sterilization potential and presented promising results after 35 min. The ozone effect on hAM structure was evaluated by histological analysis. A decrease in epithelium average thickness was observed with the exposure time increase. Furthermore, some damage in the epithelium was observed when hAM was exposed for 10 and 15 min. It can indicate that ozone, besides being effective in sterilization, could promote the hAM sample’s de-epithelization, becoming a possible new method for removing the epithelial layer to use hAM as a scaffold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bourne, G. L. The microscope anatomy of the human amnion and chorion. Am. J. Obstet. Gynecol. 79:1070–1073, 1960.

    Article  CAS  PubMed  Google Scholar 

  2. Sikder, M. A., A. S. M. D. Alam Khan, F. Ferdousi, P. Leeza, and B. N. Hasan Tareq. Reconstruction of oral mucosal defect with oven dried human amniotic membrane graft: a case report. Bangladesh J. Med. Sci. 2010. https://doi.org/10.3329/bjms.v9i3.6480.

    Article  Google Scholar 

  3. Arrizabalaga, J. H., and M. U. Nollert. The human amniotic membrane: a versatile scaffold for tissue engineering. ACS Biomater. Sci. Eng. 4:2226–2236, 2018.

    Article  CAS  PubMed  Google Scholar 

  4. Gupta, A., S. Kedige, and K. Jain. Amnion and chorion membranes: potential stem cell reservoir with wide applications in periodontics. Int. J. Biomater. 2015. https://doi.org/10.1155/2015/274082.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dua, H., J. A. P. Gomes, A. J. King, and V. S. Maharajan. The amniotic membrane in ophthalmology. Surv. Ophthalmol. 2004. https://doi.org/10.1016/j.survophthal.2003.10.004.

    Article  PubMed  Google Scholar 

  6. Hilmy, N., N. Yusof, and A. Nather. Human Amniotic Membrane: Basic Science and Clinical Application. Singapore: World Scientific, 2017.

    Book  Google Scholar 

  7. Malhotra, C., and A. K. Jain. Human amniotic membrane transplantation: different modalities of its use in ophthalmology. World J. Transplant. 2014. https://doi.org/10.5500/wjt.v4.i2.111.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mamede, A. C., and M. F. Botelho. Amniotic Membrane: Origin, Characterization and Medical Applications, 1st ed. Dordrecht: Springer, 2015.

    Book  Google Scholar 

  9. Lee, P. H., S. H. Tsai, L. Kuo, C. Y. Hwang, C. Y. Kuo, V. C. Yang, and J. K. Chen. A prototype tissue engineered blood vessel using amniotic membrane as scaffold. Acta Biomater. 2012. https://doi.org/10.1016/j.actbio.2012.05.012.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Fukuda, K., T. Chikama, M. Nakamura, and T. Nishida. Differential distribution of subchains of the basement membrane components type IV collagen and laminin among the amniotic membrane, cornea, and conjunctiva. Cornea. 18:73–79, 1999.

    Article  CAS  PubMed  Google Scholar 

  11. Parry, S., and J. F. Strauss. Premature rupture of the fetal membranes. N. Engl. J. Med. 338:663–670, 1998.

    Article  CAS  PubMed  Google Scholar 

  12. Niknejad, H., H. Peirovi, M. Jorjani, A. Ahmadiani, J. Ghanavi, and A. M. Seifalian. Properties of the amniotic membrane for potential use in tissue engineering. Eur. Cell Mater. 2008. https://doi.org/10.22203/eCM.v015a07.

    Article  PubMed  Google Scholar 

  13. Jirsova, K., and G. L. A. Jones. Amniotic membrane in ophthalmology: properties, preparation, storage and indications for grafting—a review. Cell Tissue Bank. 2017. https://doi.org/10.1007/s10561-017-9618-5.

    Article  PubMed  Google Scholar 

  14. Leal-Marin, S., T. Kern, N. Hofmann, O. Pogozhykh, C. Framme, M. Börgel, C. Figueiredo, B. Glasmacher, and O. Gryshkov. Human amniotic membrane: a review on tissue engineering, application, and storage. J. Biomed. Mater. Res. B. 2021. https://doi.org/10.1002/jbm.b.34782.

    Article  Google Scholar 

  15. Gholipourmalekabadi, M., M. Sameni, D. Radenkovic, M. Mozafari, M. Mossahebi-Mohammadi, and A. Seifalian. Decellularized human amniotic membrane: how viable is it as a delivery system for human adipose tissue-derived stromal cells? Cell Prolif. 2016. https://doi.org/10.1111/cpr.12240.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kheilnezhad, B., and A. Hadjizadeh. A review: progress in preventing tissue adhesions from a biomaterial perspective. Biomater. Sci. 2021. https://doi.org/10.1039/d0bm02023k.

    Article  PubMed  Google Scholar 

  17. Davis, J. W. Skin transplantation with a review of 550 cases at the John Hopkins Hospital. Johns Hopkins Med. J. 15:307–396, 1910.

    Google Scholar 

  18. Stern, M. The grafting of preserved amniotic membrane to burned and ulcerated surfaces, substituting skin grafts. J. Am. Med. Assoc. 60:973–974, 1913.

    Article  Google Scholar 

  19. de Rötth, A., and W. Spokane. Plastic repair of conjunctival defects with fetal membranes. Arch. Ophthalmol. 23(3):522–525, 1940.

    Article  Google Scholar 

  20. Sripriya, R., and R. Kumar. Denudation of human amniotic membrane by a novel process and its characterizations for biomedical applications. Prog. Biomater. 5:161–172, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Munoz-Torres, J. R., S. B. Martínez-González, A. D. Lozano-Luján, M. C. Martínez-Vázquez, P. Velasco-Elizondo, I. Garza-Veloz, and M. L. Martinez-Fierro. Biological properties and surgical applications of the human amniotic membrane. Front. Bioeng. Biotechnol. 2023. https://doi.org/10.3389/fbioe.2022.1067480.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Guide to the quality and safety of tissues and cells for human application. European Directorate for the Quality of Medicines & HealthCare of the Council of Europe (EDQM), 4th ed. 2019.

  23. Riau, A. K., R. W. Beuerman, L. S. Lim, and J. S. Mehta. Preservation, sterilization and de-epithelialization of human amniotic membrane for use in ocular surface reconstruction. Biomaterials. 2010. https://doi.org/10.1016/j.biomaterials.2009.09.034.

    Article  PubMed  Google Scholar 

  24. Von Versen-Höynck, F., C. Syring, S. Bachmann, and D. E. Möller. The influence of different preservation and sterilization steps on the histological properties of amnion allografts—light and scanning electron microscopy studies. Cell Tissue Bank. 5:45–56, 2004.

    Article  Google Scholar 

  25. Paggiaro, A. O., M. B. Mathor, R. W. Teodoro, C. Isaac, V. L. Capelozzi, and R. Gemperli. Evaluation of radiosterilized glyercerolated amniotic membranes as a substrate for cultured human epithelial cells. Organogenesis. 2020. https://doi.org/10.1080/15476278.2020.1723366.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wilshaw, S.-P., et al. Production of an acellular amniotic membrane matrix for use in tissue engineering. Tissue Eng. 2006. https://doi.org/10.1089/ten.2006.12.2117.

    Article  PubMed  Google Scholar 

  27. Gomella, C. Ozone practices in France. J. Am. Water Works Assoc. 64:39–45, 1972.

    Article  CAS  Google Scholar 

  28. Bocci, V. OZONE: A New Medical Drug, 1st ed. Dordrecht: Springer, 2005.

    Google Scholar 

  29. Kowalski, W. J., W. P. Bahnfleth, and T. S. Whittam. Bacterial effects of high airborne ozone concentrations on Escherichia coli and Staphylococcus aureus. Ozone Sci. Eng. 1998. https://doi.org/10.1080/01919519808547272.

    Article  Google Scholar 

  30. Coronel, B., P. Duroselle, H. Behr, J. F. Moskovtchenko, and J. Freney. In situ decontamination of medical wastes using oxidative agents: a 16-month study in a polyvalent intensive care unit. J. Hosp. Infect. 2002. https://doi.org/10.1053/jhin.2002.1188.

    Article  PubMed  Google Scholar 

  31. Bialoszewski, D., A. Pietruczuk-Padzik, A. Kalicinska, E. Bocian, M. Czajkowska, B. Bukowska, and S. Tyski. Activity of ozonated water and ozone against Staphylococcus aureus and Pseudomonas aeruginosa biofilms. Med. Sci. Monit. 2011. https://doi.org/10.12659/MSM.882044.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kim, J. G., and A. E. Yousef. Inactivation kinetics of foodborne spoilage and pathogenic bacteria by ozone. J. Food Sci. 65:521–528, 2000.

    Article  CAS  Google Scholar 

  33. Wood, J. P., M. Wendling, W. Richter, and J. Rogers. The use of ozone gas for the inactivation of Bacillus anthracis and Bacillus subtilis spores on building materials. PLoS ONE. 2020. https://doi.org/10.1371/journal.pone.0233291.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Mahfoudh, A., J. Barbeau, M. Moisan, A. Leduc, and J. Séguin. Biocidal action of ozone-treated polystyrene surfaces on vegetative and sporulated bacteria. Appl. Surf. Sci. 256:3063–3072, 2010.

    Article  CAS  Google Scholar 

  35. Sakurai, M., R. Takahashi, S. Fukunaga, S. Shiomi, K. Kazuma, and H. Shintani. Several factors affecting ozone gas sterilization. Biocontrol Sci. 8:69–76, 2003.

    Article  CAS  Google Scholar 

  36. Luqueta, G. R., E. D. Dos Santos, R. S. Pessoa, and H. S. Maciel. Evaluation of disposable medical device packaging materials under ozone sterilization. Revista Brasileira de Engenharia Biomedica. 2017. https://doi.org/10.1590/2446-4740.03216.

    Article  Google Scholar 

  37. Khadre, M. A., A. E. Yousef, and J. G. Kim. Microbiological aspects of ozone applications in food: a review. J. Food Sci. 2001. https://doi.org/10.1111/j.1365-2621.2001.tb15196.x.

    Article  Google Scholar 

  38. Lone, S. A., S. Raghunathan, M. A. Davoodbasha, H. Srinivasan, and S. Y. Lee. An investigation on the sterilization of berry fruit using ozone: an option to preservation and long-term storage. Biocatal. Agric. Biotechnol. 2019. https://doi.org/10.1016/j.bcab.2019.101212.

    Article  Google Scholar 

  39. Thill, S. A., and M. Spaltenstein. Toward efficient low-temperature ozone gas sterilization of medical devices. Ozone Sci. Eng. 2020. https://doi.org/10.1080/01919512.2019.1704217.

    Article  Google Scholar 

  40. Taran, V., I. Garkusha, Y. Gnidenko, V. Krasnyj, A. Lozina, A. Taran, O. Chechelnitskyi, V. Starikov, and S. Starikova. Portable ozone sterilization device with mechanical and ultrasonic cleaning units for dentistry. Rev. Sci. Instrum. 2020. https://doi.org/10.1063/1.5145279.

    Article  PubMed  Google Scholar 

  41. Rickloff, J. R. An evaluation of the sporicidal activity of ozone. Appl. Environ. Microbiol. 1987. https://doi.org/10.1128/aem.53.4.683-686.1987.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Marson, R. F., L. Moreira, R. A. Zângaro, C. J. de Lima, and A. B. Fernandes. Use of ozonated water for disinfecting gastrointestinal endoscopes. Ozone Sci. Eng. 2016. https://doi.org/10.1080/01919512.2016.1192455.

    Article  Google Scholar 

  43. de Souza Botelho-Almeida, T., F. R. Lourenço, I. S. Kikuchi, R. Awasthi, K. Dua, and T. Andreoli Pinto. Evaluating the potential, applicability, and effectiveness of ozone sterilization process for medical devices. J. Pharm. Innov. 2018. https://doi.org/10.1007/s12247-017-9308-7.

    Article  Google Scholar 

  44. Moreira, L., M. K. Salomão, H. C. Carvalho, A. L. S. Mendes, R. A. Zangaro, A. B. Fernandes, and C. J. de Lima. Ozonation of bovine peritoneal membrane for preservation: preliminary investigation. Ozone Sci. Eng. 2022. https://doi.org/10.1080/01919512.2021.1984205.

    Article  Google Scholar 

  45. Stolle, L., R. Nalamasu, R. Rodenbeck, K. Davidson, C. Smarelli, S. Rosko, J. Wales, J. A. K. LeQuang, and J. Pergolizzi. Ozone: a novel sterilizer for personal protective equipamento. Cureus. 2021. https://doi.org/10.7759/cureus.18228.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Oizumi, M., T. Suzuki, M. Uchida, J. Furuya, and Y. Okamoto. In vitro testing of a denture cleaning method using ozone. J. Med. Dent. Sci. 45:135–139, 1998.

    CAS  PubMed  Google Scholar 

  47. Awoyama, S. M., H. C. Carvalho, T. de Souza Botelho, S. I. S. dos Santos, D. A. Buendia Palacios, S. San Martín Henríque, R. A. Zângaro, C. J. de Lima, and A. B. Fernandes. Disinfection of human amniotic membrane using a hydrodynamic system with ozonated water. Ozone Sci. Eng. 2022. https://doi.org/10.1080/01919512.2021.2022452.

    Article  Google Scholar 

  48. John, S., M. R. Kesting, P. Paulitschke, M. Stöckelhuber, and A. von Bomhard. Development of a tissue-engineered skin substitute on a base of human amniotic membrane. J. Tissue Eng. 2019. https://doi.org/10.1177/2041731418825378.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Koizumi, N., N. J. Fullwood, G. Bairaktaris, T. Inatomi, S. Kinoshita, and A. J. Quantock. Cultivation of corneal epithelial cells on intact and denuded human amniotic membrane. Investig. Ophthalmol. Vis. Sci. 41:2506–2513, 2000.

    CAS  Google Scholar 

  50. Koizumi, N., H. Rigby, N. J. Fullwood, S. Kawasaki, H. Tanioka, K. Koizumi, N. Kociok, A. M. Joussen, and S. Kinoshita. Comparison of intact and denuded amniotic membrane as a substrate for cell-suspension culture of human limbal epithelial cells. Graefe’s Arch. Clin. Exp. Ophthalmol. 2007. https://doi.org/10.1007/s00417-005-0095-3.

  51. Gilbert, T. W. Strategies for tissue and organ decellularization. J. Cell. Biochem. 2012. https://doi.org/10.1002/jcb.24130.

    Article  PubMed  Google Scholar 

  52. Khosravimelal, S., M. Momeni, M. Gholipur, S. C. Kundu, and M. Gholipourmalekabadi. Protocols for decellularization of human amniotic membrane. In: Methods in Cell Biology, edited by D. Caballero, S. C. Kundu, and R. L. Reis. Portugal: Academic Press Inc, 2020, pp. 37–47.

    Google Scholar 

  53. Zhang, T., G. H.-F. Yam, A. K. Riau, R. Poh, J. C. Allen, G. S. Peh, R. W. Beuerman, D. T. Tan, and J. S. Mehta. The effect of amniotic membrane de-epithelialization method on its biological properties and ability to promote limbal epithelial cell culture. Investig. Ophthalmol. Vis. Sci. 54:3072–3081, 2013. https://doi.org/10.1167/iovs.12-10805.

    Article  Google Scholar 

  54. Moran, S. Engineering science of water treatment unit operations. In: An Applied Guide to Water and Effluent Treatment Plant Design, edited by S. Moran. Oxford: Elsevier, 2018, pp. 39–51.

    Chapter  Google Scholar 

  55. McKeen, L. Introduction to food irradiation and medical sterilization. In: The Effect of Sterilization on Plastics and Elastomers, edited by W. Andrew. Waltham: Elsevier, 2012, pp. 1–40.

    Google Scholar 

  56. Solon, J. G., and S. Killeen. Decontamination and sterilization. Surgery. 2015. https://doi.org/10.1016/j.mpsur.2015.08.006.

    Article  Google Scholar 

  57. Nogaroto, S. L., and T. C. V. Penna. Desinfecção e esterilização. São Paulo: Atheneu, 2006.

    Google Scholar 

  58. Rietschel, E. T., T. Kirikae, F. U. Schade, U. Mamat, G. Schmidt, H. Loppnow, A. J. Ulmer, U. Zähringer, U. Seydel, F. Di Padova, M. Schreier, and H. Brade. Bacterial endotoxin: molecular relationships of structure to activity and function. FASEB J. 1994. https://doi.org/10.1096/fasebj.8.2.8119492.

    Article  PubMed  Google Scholar 

  59. Henderson, B., S. Poole, and M. Wilson. Bacterial modulins: a novel class of virulence factors which cause host tissue pathology by inducing cytokine synthesis. Microbiol. Rev. 1996. https://doi.org/10.1128/mr.60.2.316-341.1996.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Oh, B. T., Y. S. Seo, D. Sudhakar, J. H. Choe, S. M. Lee, Y. J. Park, and M. Cho. Oxidative degradation of endotoxin by advanced oxidation process (O3/H2O2 & UV/H2O2). J. Hazard. Mater. 2014. https://doi.org/10.1016/j.jhazmat.2014.06.065.

    Article  PubMed  Google Scholar 

  61. United States Pharmacopeial Convention. https://online.uspnf.com. Accessed 15 July 2023.

  62. Normas Técnicas para o Funcionamento dos Bancos de Sangue de Cordão Umbilical e Placentário. ANVISA. 2003. https://bvsms.saude.gov.br/bvs/saudelegis/anvisa/2003/rdc0190_18_07_2003.html. Accessed 18 July 2023.

  63. Brazilian Health Regulatory Agency (ANVISA). Brazilian Pharmacopoeia, 6th ed. Brasilia: Brazilian Health Regulatory Agency (ANVISA), 2019.

    Google Scholar 

  64. van Leeuwen, J. H. Proposed OS7E requirement: measuring ozone dosage. Ozone Sci. Eng. 2015. https://doi.org/10.1080/01919512.2015.1006467.

    Article  Google Scholar 

  65. Assis, E. Manual de boas práticas em patologia. São Paulo: Sociedade Brasileira de Patologia, 2020.

    Google Scholar 

  66. Epelle, E. I., A. Macfarlane, M. Cusack, A. Burns, N. Amaeze, K. Richardson, W. Mackay, M. E. Rateb, and M. Yaseen. Stabilisation of ozone in water for microbial disinfection. Environments. 2022. https://doi.org/10.3390/environments9040045.

    Article  Google Scholar 

  67. Shinozuka, Y., K. Uematsu, M. Takagi, and Y. Taura. Comparison of the amounts of endotoxin released from Escherichia coli after exposure to antibiotics and ozone: an in vitro evaluation. J. Vet. Med. Sci. 2008. https://doi.org/10.1292/jvms.70.419.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

B. A. Kawata acknowledges CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brazil) - Financing Code 001 and the Santa Casa de Misericórdia in Pindamonhangaba-SP, Brazil. P. A. Laurindo Igreja Marrafa acknowledges CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brazil) for the Doctorate scholarship - Financing Code 001. S. Móbille Awoyama acknowledges FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) for the PIPE Program Phase 1 financing (Process No. 2019/22907-4). A. Barrinha Fernandes and C. J. de Lima acknowledge the Anima Institute (AI), Universidade Anhembi Morumbi, São Paulo-SP, Brazil. A. Barrinha Fernandes thanks CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for the productivity fellowship (Process No. 310708/2021-4).

Author information

Authors and Affiliations

Authors

Contributions

All authors whose names appear on the submission made substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data; or the creation of new software used in the work.

Corresponding author

Correspondence to Bianca Akemi Kawata.

Ethics declarations

Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could influence the work reported in this paper.

Additional information

Associate Editor Joel Stitzel oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Botelho, T., Kawata, B.A., Móbille Awoyama, S. et al. Sterilization of Human Amniotic Membrane Using an Ozone Hydrodynamic System. Ann Biomed Eng 52, 1425–1434 (2024). https://doi.org/10.1007/s10439-024-03467-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-024-03467-3

Keywords

Navigation