Skip to main content
Log in

An Enhanced Spine Model Validated for Simulating Dynamic Lifting Tasks in OpenSim

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A fully articulated thoracolumbar spine model had been previously developed in OpenSim and had been extensively validated against experimental data during various static tasks. In the present study, we enhanced this detailed musculoskeletal model by adding the role of passive structures and adding kinematic constraints to make it suitable for dynamic tasks. We validated the spinal forces estimated by this enhanced model during nine dynamic lifting/lowering tasks. Moreover, we recently developed and evaluated five approaches in OpenSim to model the external loads applied to the hands during lifting/lowering tasks, and in the present study, we assessed which approach results in more accurate spinal forces. Regardless of the external load modeling approach, the maximum forces predicted by our enhanced spine model across all tasks, as well as the pattern of estimated spinal forces within each task, showed strong correlations (r-values and cross-correlation coefficients > 0.9) with experimental data. Given the biofidelity of our enhanced model, its accessibility via the open-source OpenSim software, and the extent to which this model has been validated, we recommend it for applications requiring estimation of spinal forces during lifting/lowering tasks using multibody-based models and inverse dynamic analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Akhavanfar, M. H., S. C. E. Brandon, S. H. M. Brown, and R. B. Graham. Development of a novel MATLAB-based framework for implementing mechanical joint stability constraints within OpenSim musculoskeletal models. J. Biomech. 91:61–68, 2019.

    Article  PubMed  Google Scholar 

  2. Akhavanfar, M., T. K. Uchida, A. L. Clouthier, and R. B. Graham. Sharing the load: modeling loads in OpenSim to simulate two-handed lifting. Multibody Syst. Dyn. 54:213–234, 2022.

    Article  Google Scholar 

  3. Akhavanfar, M., T. K. Uchida, and R. B. Graham. Evaluation of spinal force normalization techniques. J. Biomech. 147:111441, 2023.

    Article  PubMed  Google Scholar 

  4. Alemi, M. M., J. J. Banks, A. C. Lynch, B. T. Allaire, M. L. Bouxsein, and D. E. Anderson. EMG validation of a subject-specific thoracolumbar spine musculoskeletal model during dynamic activities in older adults. Ann. Biomed. Eng. 2023. https://doi.org/10.1007/s10439-023-03273-.

    Article  PubMed  Google Scholar 

  5. Alemi, M. M., K. A. Burkhart, A. C. Lynch, B. T. Allaire, S. J. Mousavi, C. Zhang, M. L. Bouxsein, and D. E. Anderson. The influence of kinematic constraints on model performance during inverse kinematics analysis of the thoracolumbar spine. Front. Bioeng. Biotechnol. 9:688041, 2021.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Andersson, G. B., R. Ortengren, and A. Nachemson. Intradiskal pressure, intra-abdominal pressure and myoelectric back muscle activity related to posture and loading. Clin. Orthop. Relat. Res. 129:156–164, 1977.

    Article  Google Scholar 

  7. Banks, J. J., M. M. Alemi, B. T. Allaire, A. C. Lynch, M. L. Bouxsein, and D. E. Anderson. Using static postures to estimate spinal loading during dynamic lifts with participant-specific thoracolumbar musculoskeletal models. Appl. Ergon. 106:103869, 2023.

    Article  PubMed  Google Scholar 

  8. Banks, J. J., B. R. Umberger, and G. E. Caldwell. EMG optimization in OpenSim: a model for estimating lower back kinetics in gait. Med. Eng. Phys. 103:103790, 2022.

    Article  PubMed  Google Scholar 

  9. Bassani, T., E. Stucovitz, Z. Qian, M. Briguglio, and F. Galbusera. Validation of the AnyBody full body musculoskeletal model in computing lumbar spine loads at L4L5 level. J. Biomech. 58:89–96, 2017.

    Article  PubMed  Google Scholar 

  10. Beaucage-Gauvreau, E., S. C. E. Brandon, W. S. P. Robertson, R. Fraser, B. J. C. Freeman, R. B. Graham, D. Thewlis, and C. F. Jones. A braced arm-to-thigh (BATT) lifting technique reduces lumbar spine loads in healthy and low back pain participants. J. Biomech. 100:109584, 2020.

    Article  PubMed  Google Scholar 

  11. Beaucage-Gauvreau, E., W. S. P. Robertson, S. C. E. Brandon, R. Fraser, B. J. C. Freeman, R. B. Graham, D. Thewlis, and C. F. Jones. Validation of an OpenSim full-body model with detailed lumbar spine for estimating lower lumbar spine loads during symmetric and asymmetric lifting tasks. Comput. Methods Biomech. Biomed. Eng. 22:451–464, 2019.

    Article  Google Scholar 

  12. Bender, A., and G. Bergmann. Determination of typical patterns from strongly varying signals. Comput. Methods Biomech. Biomed. Eng. 15:761–769, 2012.

    Article  CAS  Google Scholar 

  13. Bruno, A. G., M. L. Bouxsein, and D. E. Anderson. Development and validation of a musculoskeletal model of the fully articulated thoracolumbar spine and rib cage. J. Biomech. Eng. 137:081003, 2015.

    Article  PubMed  Google Scholar 

  14. Burkhart, K., D. Grindle, M. L. Bouxsein, and D. E. Anderson. Between-session reliability of subject-specific musculoskeletal models of the spine derived from optoelectronic motion capture data. J. Biomech. 112:110044, 2020.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Damm, P., S. Reitmaier, S. Hahn, V. Waldheim, A. Firouzabadi, and H. Schmidt. In vivo hip and lumbar spine implant loads during activities in forward bent postures. J. Biomech. 102:109517, 2020.

    Article  PubMed  Google Scholar 

  16. De Zee, M., L. Hansen, C. Wong, J. Rasmussen, and E. B. Simonsen. A generic detailed rigid-body lumbar spine model. J. Biomech. 40:1219–1227, 2007.

    Article  PubMed  Google Scholar 

  17. Delp, S. L., F. C. Anderson, A. S. Arnold, P. Loan, A. Habib, C. T. John, E. Guendelman, and D. G. Thelen. OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54:1940–1950, 2007.

    Article  PubMed  Google Scholar 

  18. Dreischarf, M., A. Rohlmann, F. Graichen, G. Bergmann, and H. Schmidt. In vivo loads on a vertebral body replacement during different lifting techniques. J. Biomech. 49:890–895, 2016.

    Article  PubMed  Google Scholar 

  19. Dreischarf, M., A. Shirazi-Adl, N. Arjmand, A. Rohlmann, and H. Schmidt. Estimation of loads on human lumbar spine: a review of in vivo and computational model studies. J. Biomech. 49:833–845, 2016.

    Article  PubMed  Google Scholar 

  20. Erdemir, A., S. McLean, W. Herzog, and A. J. van den Bogert. Model-based estimation of muscle forces exerted during movements. Clin. Biomech. 22:131–154, 2007.

    Article  Google Scholar 

  21. Fujii, R., H. Sakaura, Y. Mukai, N. Hosono, T. Ishii, M. Iwasaki, H. Yoshikawa, and K. Sugamoto. Kinematics of the lumbar spine in trunk rotation: in vivo three-dimensional analysis using magnetic resonance imaging. Eur. Spine J. 16:1867–1874, 2007.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Fujimori, T., M. Iwasaki, Y. Nagamoto, T. Ishii, M. Kashii, T. Murase, T. Sugiura, Y. Matsuo, K. Sugamoto, and H. Yoshikawa. Kinematics of the thoracic spine in trunk rotation: in vivo 3-dimensional analysis. Spine (Phila. Pa. 1976). 37:E1318–E1328, 2012.

    Article  PubMed  Google Scholar 

  23. Fujimori, T., M. Iwasaki, Y. Nagamoto, Y. Matsuo, T. Ishii, T. Sugiura, M. Kashii, T. Murase, K. Sugamoto, and H. Yoshikawa. Kinematics of the thoracic spine in trunk lateral bending: in vivo three-dimensional analysis. Spine J. 14:1991–1999, 2014.

    Article  PubMed  Google Scholar 

  24. Ghezelbash, F., A. Shirazi-Adl, A. Plamondon, and N. Arjmand. Comparison of different lifting analysis tools in estimating lower spinal loads–evaluation of NIOSH criterion. J. Biomech. 112:110024, 2020.

    Article  PubMed  Google Scholar 

  25. Halloran, J. P., M. Ackermann, A. Erdemir, and A. J. van den Bogert. Concurrent musculoskeletal dynamics and finite element analysis predicts altered gait patterns to reduce foot tissue loading. J. Biomech. 43:2810–2815, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Han, K.-S., T. Zander, W. R. Taylor, and A. Rohlmann. An enhanced and validated generic thoraco-lumbar spine model for prediction of muscle forces. Med. Eng. Phys. 34:709–716, 2012.

    Article  PubMed  Google Scholar 

  27. Jones, A. C., and R. K. Wilcox. Finite element analysis of the spine: towards a framework of verification, validation and sensitivity analysis. Med. Eng. Phys. 30:1287–1304, 2008.

    Article  PubMed  Google Scholar 

  28. Lerchl, T., K. Nispel, T. Baum, J. Bodden, V. Senner, and J. S. Kirschke. Multibody models of the thoracolumbar spine: a review on applications, limitations, and challenges. Bioengineering. 10:202, 2023.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lund, M. E., M. de Zee, M. S. Andersen, and J. Rasmussen. On validation of multibody musculoskeletal models. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 226:82–94, 2012.

    Article  Google Scholar 

  30. Malakoutian, M., J. Street, H.-J. Wilke, I. Stavness, S. Fels, and T. Oxland. A musculoskeletal model of the lumbar spine using ArtiSynth–development and validation. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 6:483–490, 2018.

    Article  Google Scholar 

  31. Meszaros-Beller, L., M. Hammer, S. Schmitt, and P. Pivonka. Effect of neglecting passive spinal structures: a quantitative investigation using the forward-dynamics and inverse-dynamics musculoskeletal approach. Front. Physiol. 14:1135531, 2023.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Miller, J. A. A., A. B. Schultz, D. N. Warwick, and D. L. Spencer. Mechanical properties of lumbar spine motion segments under large loads. J. Biomech. 19:79–84, 1986.

    Article  CAS  PubMed  Google Scholar 

  33. Myers, C. A., P. J. Laz, K. B. Shelburne, and B. S. Davidson. A probabilistic approach to quantify the impact of uncertainty propagation in musculoskeletal simulations. Ann. Biomed. Eng. 43:1098–1111, 2015.

    Article  PubMed  Google Scholar 

  34. Nazer, R., T. Al, A. Rantalainen, H. S. Heinonen, and A. Mikkola. Flexible multibody simulation approach in the analysis of tibial strain during walking. J. Biomech. 41:1036–1043, 2008.

    Article  PubMed  Google Scholar 

  35. Polga, D. J., B. P. Beaubien, P. M. Kallemeier, K. P. Schellhas, W. D. Lew, G. R. Buttermann, and K. B. Wood. Measurement of in vivo intradiscal pressure in healthy thoracic intervertebral discs. Spine (Phila. Pa. 1976). 29:1320–1324, 2004.

    Article  PubMed  Google Scholar 

  36. Rohlmann, A., D. Pohl, A. Bender, F. Graichen, J. Dymke, H. Schmidt, and G. Bergmann. Activities of everyday life with high spinal loads. PLoS One. 9:3–11, 2014.

    Article  Google Scholar 

  37. Rozumalski, A., M. H. Schwartz, R. Wervey, A. Swanson, D. C. Dykes, and T. Novacheck. The in vivo three-dimensional motion of the human lumbar spine during gait. Gait Posture. 28:378–384, 2008.

    Article  PubMed  Google Scholar 

  38. Schmidt, H., F. Galbusera, A. Rohlmann, and A. Shirazi-adl. What have we learned from finite element model studies of lumbar intervertebral discs in the past four decades. J. Biomech. 46:2342–2355, 2013.

    Article  PubMed  Google Scholar 

  39. Schultz, A., G. Andersson, R. Ortengren, K. Haderspeck, and A. Nachemson. Loads on the lumbar spine. Validation of a biomechanical analysis by measurements of intradiscal pressures and myoelectric signals. J. Bone Joint Surg. Am. 64:713–720, 1982.

    Article  CAS  PubMed  Google Scholar 

  40. Seth, A., J. L. Hicks, T. K. Uchida, A. Habib, C. L. Dembia, J. J. Dunne, C. F. Ong, M. S. DeMers, A. Rajagopal, M. Millard, S. R. Hamner, E. M. Arnold, J. R. Yong, S. K. Lakshmikanth, M. A. Sherman, J. P. Ku, and S. L. Delp. OpenSim: simulating musculoskeletal dynamics and neuromuscular control to study human and animal movement. PLoS Comput. Biol. 14:e1006223, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  41. von Arx, M., M. Liechti, L. Connolly, C. Bangerter, M. L. Meier, and S. Schmid. From stoop to squat: a comprehensive analysis of lumbar loading among different lifting styles. Front. Bioeng. Biotechnol. 9:769117, 2021.

    Article  Google Scholar 

  42. Wang, W., D. Wang, F. De Groote, L. Scheys, and I. Jonkers. Implementation of physiological functional spinal units in a rigid-body model of the thoracolumbar spine. J. Biomech. 98:109437, 2020.

    Article  PubMed  Google Scholar 

  43. Wilke, H.-J., P. Neef, B. Hinz, H. Seidel, and L. Claes. Intradiscal pressure together with anthropometric data–a data set for the validation of models. Clin. Biomech. 16:S111–S126, 2001.

    Article  Google Scholar 

  44. Wong, K. W. N., K. D. K. Luk, J. C. Y. Leong, S. F. Wong, and K. K. Y. Wong. Continuous dynamic spinal motion analysis. Spine (Phila. Pa. 1976). 31:414–419, 2006.

    Article  PubMed  Google Scholar 

Download references

Funding

This study was funded by the Natural Sciences and Engineering Research Council of Canada (RGPIN-2020-04748 [Ryan Graham], PGSD3-518358-2018 [Mohammadhossein Akhavanfar]), the Ontario Early Researcher Award Program (ER17-13-007 [Ryan Graham]), and the University of Ottawa Research Chairs Program (Ryan Graham).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan B. Graham.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Associate Editor Sean S. Kohles oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1743 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhavanfar, M., Mir-Orefice, A., Uchida, T.K. et al. An Enhanced Spine Model Validated for Simulating Dynamic Lifting Tasks in OpenSim. Ann Biomed Eng 52, 259–269 (2024). https://doi.org/10.1007/s10439-023-03368-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-023-03368-x

Keywords

Navigation