Skip to main content
Log in

Basic Salt Additives Modulate the Acidic Microenvironment Around In Situ Forming Implants

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

There is a growing number of protein drugs, yet their limited oral bioavailability requires that patients receive frequent, high dose injections. In situ forming implants (ISFIs) for controlled release of biotherapeutics have the potential to greatly reduce the injection frequency and improve patient compliance. However, protein release from ISFIs is a challenge due to their proclivity for instability. Specifically, factors such as the acidic microclimate within ISFIs can lead to protein aggregation and denaturation. Basic salts have been shown in PLGA microparticle and microcylinder formulations to significantly reduce protein instability by neutralizing this acidic environment. The overall objective of the study was to demonstrate that basic salts can be used with an ISFI system to neutralize the implant acidification. To this end, the basic salts MgCO3 and Mg(OH)2 were added to a protein-releasing ISFI and the effect on drug release, pH, implant swelling, implant diffusivity, and implant erosion were evaluated. Either salt added at 3 wt% neutralized the acidic environment surrounding the implants, keeping the pH at 6.64 ± 0.03 (MgCO3) and 6.46 ± 0.11 (Mg(OH)2) after 28 day compared to 3.72 ± 0.05 with no salts added. The salts initially increased solution uptake into the implants but delayed implant degradation and erosion. The 3 wt% Mg(OH)2 formulation also showed slightly improved drug release with a lower burst and increased slope. We showed that salt additives can be an effective way to modulate the pH in the ISFI environment, which can improve protein stability and ultimately improve the capacity of ISFIs for delivering pH-sensitive biomolecules. Such a platform represents a low-cost method of improving overall patient compliance and reducing the overall healthcare burden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Agarwal, P., and I. D. Rupenthal. Injectable implants for the sustained release of protein and peptide drugs. Drug Discov. Today. 18:337–349, 2013

    Article  CAS  PubMed  Google Scholar 

  2. Brodbeck, K., J. Desnoyer, and A. McHugh. Phase inversion dynamics of PLGA solutions related to drug delivery: part II. The role of solution thermodynamics and bath-side mass transfer. J. Control. Release. 62:333–344, 1999

    Article  CAS  PubMed  Google Scholar 

  3. Brown, L. R. Commercial challenges of protein drug delivery. Expert Opin. Drug Deliv. 2:29–42, 2005

    Article  PubMed  Google Scholar 

  4. Brunner, A., K. Mäder, and A. Göpferich. pH and osmotic pressure inside biodegradable microspheres during erosion. Pharm. Res. 16:847–853, 1999

    Article  CAS  PubMed  Google Scholar 

  5. Bruno, B. J., G. D. Miller, and C. S. Lim. Basics and recent advances in peptide and protein drug delivery. Ther. Deliv. 4:1443–1467, 2013

    Article  CAS  PubMed  Google Scholar 

  6. Cui, C., V. C. Stevens, and S. P. Schwendeman. Injectable polymer microspheres enhance immunogenicity of a contraceptive peptide vaccine. Vaccine. 25:500–509, 2007

    Article  CAS  PubMed  Google Scholar 

  7. Ding, A., and S. P. Schwendeman. Acidic microclimate ph distribution in PLGA microspheres monitored by confocal laser scanning microscopy. Pharm. Res. 25:2041–2052, 2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dunn, R., J. English, D. Cowsar and D. Vanderbilt. Biodegradable in-situ forming implants and methods of producing the same. U.S. Patent US4938763A, 1988 .

  9. Eliaz, R. E., and J. Kost. Characterization of a polymeric PLGA-injectable implant delivery system for the controlled release of proteins. J. Biomed. Mater. Res. 50:388–396, 2000

    Article  CAS  PubMed  Google Scholar 

  10. Estey, T., J. Kang, S. P. Schwendeman, and J. F. Carpenter. BSA degradation under acidic conditions: a model for protein instability during release from PLGA delivery systems. J. Pharm. Sci. 95:1626–1639, 2006

    Article  CAS  PubMed  Google Scholar 

  11. Fu, K., A. M. Klibanov, and R. Langer. Protein stability in controlled-release systems. Nat. Biotechnol. 18:24–25, 2000

    Article  CAS  PubMed  Google Scholar 

  12. Fu, K., D. W. Pack, A. M. Klibanov, and R. Langer. Visual evidence of acidic environment within degrading poly(lactic-co-glycolic acid) (PLGA) microspheres. Pharm. Res. 17:100–106, 2000

    Article  CAS  PubMed  Google Scholar 

  13. Graham, P., K. Brodbeck, and A. McHugh. Phase inversion dynamics of PLGA solutions related to drug delivery. J. Control. Release. 58:233–245, 1999

    Article  CAS  PubMed  Google Scholar 

  14. Hopkins, K. A., N. Vike, X. Li, J. Kennedy, E. Simmons, J. Rispoli, and L. Solorio. Noninvasive characterization of in situ forming implant diffusivity using diffusion-weighted MRI. J. Control. Release. 309:289–301, 2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Houchin, M. L., and E. M. Topp. Chemical degradation of peptides and proteins in PLGA: a review of reactions and mechanisms. J. Pharm. Sci. 97:2395–2404, 2008

    Article  CAS  PubMed  Google Scholar 

  16. Ibeanu, N., R. Egbu, L. Onyekuru, H. Javaheri, P. T. Khaw, G. R. Williams, S. Brocchini, and S. Awwad. Injectables and depots to prolong drug action of proteins and peptides. Pharmaceutics. 12:999, 2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jiang, W., and S. P. Schwendeman. Stabilization of tetanus toxoid encapsulated in plga microspheres. Mol. Pharm. 5:808–817, 2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kang, J., and S. P. Schwendeman. Comparison of the effects of Mg(OH)2 and sucrose on the stability of bovine serum albumin encapsulated in injectable poly(d, l-lactide-co-glycolide) implants. Biomaterials. 23:239–245, 2002

    Article  CAS  PubMed  Google Scholar 

  19. Kempe, S., and K. Mader. In situ forming implants - an attractive formulation principle for parenteral depot formulations. J. Control. Release. 161:668–679, 2012

    Article  CAS  PubMed  Google Scholar 

  20. Lambert, W. J., and K. D. Peck. Development of an in situ forming biodegradable poly-lactide-co-glycolide system for the controlled release of proteins. J. Control. Release. 33:189–195, 1995

    Article  CAS  Google Scholar 

  21. Lewis, A. L., and L. Illum. Formulation strategies for sustained release of proteins. Ther. Deliv. 1:457–479, 2010

    Article  CAS  PubMed  Google Scholar 

  22. Lewis, A. L., and J. Richard. Challenges in the delivery of peptide drugs: an industry perspective. Ther. Deliv. 6:49–163, 2015

    Article  Google Scholar 

  23. Liu, Y., and S. P. Schwendeman. Mapping microclimate ph distribution inside protein-encapsulated plga microspheres using confocal laser scanning microscopy. Mol. Pharm. 9:1342–1350, 2012

    Article  CAS  PubMed  Google Scholar 

  24. Packhaeuser, C., J. Schnieders, C. Oster, and T. Kissel. In situ forming parenteral drug delivery systems: an overview. Eur. J. Pharm. Biopharm. 58:445–455, 2004

    Article  CAS  PubMed  Google Scholar 

  25. Parent, M., C. Nouvel, M. Koerber, A. Sapin, P. Maincent, and A. Boudier. PLGA in situ implants formed by phase inversion: critical physiochemical parameters to modulate drug release. J. Control. Release. 172:292–304, 2013

    Article  CAS  PubMed  Google Scholar 

  26. Patel, R. B., L. Solorio, H. Wu, T. Krupka, and A. A. Exner. Effect of injection site on in situ forming implant formation and drug release in vivo. J. Control. Release. 147(3):350–358, 2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pauletti, G. M., S. Gangwar, T. J. Siahaan, J. Aubé, and R. T. Borchardt. Improvement of oral peptide bioavailability: peptidomimetics and prodrug strategies. Adv. Drug. Deliv. Rev. 27:235–256, 1997

    Article  PubMed  Google Scholar 

  28. Putney, S. D., and P. A. Burke. Improving protein therapeutics with sustained-release formulations. Nat. Biotechnol. 16:153–157, 1998

    Article  CAS  PubMed  Google Scholar 

  29. Renukuntla, J., A. D. Vadlapudi, A. Patel, S. H. Boddu, and A. K. Mitra. Approaches for enhancing oral bioavailability of peptides and proteins. Int. J. Pharm. 447:75–93, 2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schädlich, A., S. Kempe, and K. Mäder. Noninvasive in vivo characterization of microclimate pH inside in situ forming PLGA implants using multispectral fluorescence imaging. J. Control. Release. 179:52–62, 2014

    Article  PubMed  Google Scholar 

  31. Schwendeman, S. P. Recent advances in the stabilization of proteins encapsulated in injectable plga delivery systems. Crit. Rev. Ther. Drug Carrier Syst. 19:73–98, 2002

    Article  CAS  PubMed  Google Scholar 

  32. Schwendeman, S. P., R. B. Shah, B. A. Bailey, and A. S. Schwendeman. Injectable controlled release depots for large molecules. J. Control. Release. 190:240–253, 2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shenderova, A., A. G. Ding, and S. P. Schwendeman. Potentiometric method for determination of microclimate pH in poly(lactic-co-glycolic acid) films. Macromolecules. 37:10052–10058, 2004

    Article  CAS  Google Scholar 

  34. Shire, S. J., Z. Shahrokh, and J. Liu. Challenges in the development of high protein concentration formulations. J. Pharm. Sci. 93:1390–1402, 2004

    Article  CAS  PubMed  Google Scholar 

  35. Solorio, L., and A. A. Exner. Effect of the subcutaneous environment on phase-sensitive in situ-forming implant drug release, degradation, and microstructure. J. Pharm. Sci. 104(12):4322–4328, 2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Stejskal, E. O., and J. E. Tanner. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J. Chem. Phys. 42:288–292, 1965

    Article  CAS  Google Scholar 

  37. Stevenson, C. L., C. A. Rhodes and S. J. Prestrelski. Delivery of peptides and proteins via long acting injections and implants. In: Long Acting Injections and Implants. Boston: Springer, 2012 .

  38. Vaishya, R., V. Khurana, S. Patel, and A. K. Mitra. Long-term delivery of protein therapeutics. Expert Opin. Drug Deliv. 12:415–440, 2015

    Article  CAS  PubMed  Google Scholar 

  39. van de Weert, M., W. E. Hennink, and W. Jiskoot. Protein instability in poly(lactic-co-glycolic acid) microparticles. Pharm. Res. 17:1159–1167, 2000

    Article  PubMed  Google Scholar 

  40. Ye, M., S. Kim, and K. Park. Issues in long-term protein delivery using biodegradable microparticles. J. Control. Release. 146:241–260, 2010

    Article  CAS  PubMed  Google Scholar 

  41. Zhu, G., S. R. Mallery, and S. P. Schwendeman. Stabilization of proteins encapsulated in injectable poly(lactide-co-glycolide). Nat. Biotechnol. 18:52–57, 2000

    Article  CAS  PubMed  Google Scholar 

  42. Zhu, G., and S. P. Schwendeman. Stabilization of proteins encapsulated in cylindrical poly(lactide-co-glycolide) implants: mechanism of stabilization by basic additives. Pharm. Res. 17:351–357, 2000

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the Purdue Electron Microscopy Facility and the Purdue MRI Facility for their assistance with SEM and DWI, respectively. We would also like to acknowledge the Summer Undergraduate Research Fellowship (SURF) at Purdue University for E.W.

Funding

None.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Solorio.

Additional information

Associate Editor Stefan M. Duma oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 234 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hopkins, K., Wakelin, E., Romick, N. et al. Basic Salt Additives Modulate the Acidic Microenvironment Around In Situ Forming Implants. Ann Biomed Eng 51, 966–976 (2023). https://doi.org/10.1007/s10439-022-03109-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-022-03109-6

Keywords

Navigation