Skip to main content
Log in

Multi-feature-Based Robust Cell Tracking

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Cell tracking algorithms have been used to extract cell counts and motility information from time-lapse images of migrating cells. However, these algorithms often fail when the collected images have cells with spatially and temporally varying features, such as morphology, position, and signal-to-noise ratio. Consequently, state-of-the-art algorithms are not robust or reliable because they require manual inputs to overcome the cell feature changes. To address these issues, we present a fully automated, adaptive, and robust feature-based cell tracking algorithm for the accurate detection and tracking of cells in time-lapse images. Our algorithm tackles measurement limitations twofold. First, we use Hessian filtering and adaptive thresholding to detect the cells in images, overcoming spatial feature variations among the existing cells without manually changing the input thresholds. Second, cell feature parameters are measured, including position, diameter, mean intensity, area, and orientation, and these parameters are simultaneously used to accurately track the cells between subsequent frames, even under poor temporal resolution. Our technique achieved a minimum of 92% detection and tracking accuracy, compared to 16% from Mosaic and Trackmate. Our improved method allows for extended tracking and characterization of heterogeneous cell behavior that are of particular interest for intravital imaging users.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5
FIGURE 6
FIGURE 7

Similar content being viewed by others

References

  1. Ahmadzadegan, A., A. M. Ardekani, and P. P. Vlachos. Estimation of the probability density function of random displacements from images. Phys. Rev. E. 102:033305, 2020.

    Article  CAS  PubMed  Google Scholar 

  2. Ahmadzadegan A., B. Sayantan, A. M., Ardekani, and P. P. Vlachos. Uncertainty estimation for ensemble particle image velocimetry. Meas. Sci. Technol. 33(8):085302. https://doi.org/10.1088/1361-6501/ac65dc.

    Article  Google Scholar 

  3. Ahmadzadegan, A., S. Wang, P. P. Vlachos, and A. M., Ardekani. Hydrodynamic attraction of bacteria to gas and liquid interfaces. Phys. Rev. E 100(6):062605. https://doi.org/10.1103/PhysRevE.100.062605.

    Article  PubMed  Google Scholar 

  4. Angelucci, C., G. Maulucci, G. Lama, G. Proietti, A. Colabianchi, M. Papi, A. Maiorana, M. De Spirito, A. Micera, O. B. Balzamino, A. Di Leone, R. Masetti, and G. Sica. Epithelial-stromal interactions in human breast cancer: effects on adhesion, plasma membrane fluidity and migration speed and directness. PLoS ONE. 7:e50804, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bise, R., T. Kanade, Z. Yin, and S. I. Huh. Automatic cell tracking applied to analysis of cell migration in wound healing assay. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 6174–6179:2011, 2011.

    Google Scholar 

  6. Canny, J. A Computational approach to edge-detection. IEEE Trans. Pattern Anal. Mach. Intell. 8:679–698, 1986.

    Article  CAS  PubMed  Google Scholar 

  7. Cardwell, N. D., P. P. Vlachos, and K. A. Thole. A multi-parametric particle-pairing algorithm for particle tracking in single and multiphase flows. Meas. Sci. Technol. 2011. https://doi.org/10.1088/0957-0233/22/10/105406.

    Article  Google Scholar 

  8. Chenouard, N., I. Smal, F. de Chaumont, M. Maska, I. F. Sbalzarini, Y. Gong, J. Cardinale, C. Carthel, S. Coraluppi, M. Winter, A. R. Cohen, W. J. Godinez, K. Rohr, Y. Kalaidzidis, L. Liang, J. Duncan, H. Shen, Y. Xu, K. E. Magnusson, J. Jalden, H. M. Blau, P. Paul-Gilloteaux, P. Roudot, C. Kervrann, F. Waharte, J. Y. Tinevez, S. L. Shorte, J. Willemse, K. Celler, G. P. van Wezel, H. W. Dan, Y. S. Tsai, C. Ortiz de Solorzano, J. C. Olivo-Marin, and E. Meijering. Objective comparison of particle tracking methods. Nat. Methods. 11:281–289, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Crocker, J. C., and D. G. Grier. Methods of digital video microscopy for colloidal studies. J. Colloid Interface Sci. 179:298–310, 1996.

    Article  CAS  Google Scholar 

  10. Eckstein, A., and P. P. Vlachos. Digital particle image velocimetry (DPIV) robust phase correlation. Meas. Sci. Technol. 2009. https://doi.org/10.1088/0957-0233/20/5/055401.

    Article  Google Scholar 

  11. Fraley, S. I., P. H. Wu, L. He, Y. Feng, R. Krisnamurthy, G. D. Longmore, and D. Wirtz. Three-dimensional matrix fiber alignment modulates cell migration and MT1-MMP utility by spatially and temporally directing protrusions. Sci. Rep. 5:14580, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Guo, T. Q., A. M. Ardekani, and P. P. Vlachos. Microscale, scanning defocusing volumetric particle-tracking velocimetry. Exp. Fluids. 2019. https://doi.org/10.1007/s00348-019-2731-4.

    Article  Google Scholar 

  13. Jaqaman, K., D. Loerke, M. Mettlen, H. Kuwata, S. Grinstein, S. L. Schmid, and G. Danuser. Robust single-particle tracking in live-cell time-lapse sequences. Nat. Methods. 5:695–702, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jun, B. H., T. Guo, S. Libring, M. K. Chanda, J. S. Paez, A. Shinde, M. K. Wendt, P. P. Vlachos, and L. Solorio. Fibronectin-expressing mesenchymal tumor cells promote breast cancer metastasis. Cancers (Basel). 12:2553, 2020.

    Article  CAS  PubMed  Google Scholar 

  15. Justus, C. R., N. Leffler, M. Ruiz-Echevarria, and L. V. Yang. In vitro cell migration and invasion assays. J. Vis. Exp. 88:e51046, 2014.

    Google Scholar 

  16. Libring, S., A. Shinde, M. K. Chanda, M. Nuru, H. George, A. M. Saleh, A. Abdullah, T. L. Kinzer-Ursem, S. Calve, M. K. Wendt, and L. Solorio. The dynamic relationship of breast cancer cells and fibroblasts in fibronectin accumulation at primary and metastatic tumor sites. Cancers. 12:1270, 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lindeberg, T. Feature detection with automatic scale selection. Int. J. Comput. Vis. 30:79–116, 1998.

    Article  Google Scholar 

  18. Nguyen, D. X., P. D. Bos, and J. Massague. Metastasis: from dissemination to organ-specific colonization. Nat. Rev. Cancer. 9:274–284, 2009.

    Article  CAS  PubMed  Google Scholar 

  19. Pijuan, J., C. Barcelo, D. F. Moreno, O. Maiques, P. Siso, R. M. Marti, A. Macia, and A. Panosa. In vitro cell migration, invasion, and adhesion assays: from cell imaging to data analysis. Front. Cell Dev. Biol. 7:107, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Rapoport, D. H., T. Becker, A. Madany Mamlouk, S. Schicktanz, and C. Kruse. A novel validation algorithm allows for automated cell tracking and the extraction of biologically meaningful parameters. PLoS ONE. 6:e27315, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sbalzarini, I. F., and P. Koumoutsakos. Feature point tracking and trajectory analysis for video imaging in cell biology. J. Struct. Biol. 151:182–195, 2005.

    Article  CAS  PubMed  Google Scholar 

  22. Semmling, V., V. Lukacs-Kornek, C. A. Thaiss, T. Quast, K. Hochheiser, U. Panzer, J. Rossjohn, P. Perlmutter, J. Cao, and D. I. Godfrey. Alternative cross-priming through CCL17-CCR4-mediated attraction of CTLs toward NKT cell–licensed DCs. Nat. Immunol. 11:313, 2010.

    Article  CAS  PubMed  Google Scholar 

  23. Shinde, A., S. Libring, A. Alpsoy, A. Abdullah, J. A. Schaber, L. Solorio, and M. K. Wendt. Autocrine fibronectin inhibits breast cancer metastasis. Mol. Cancer Res. 16:1579–1589, 2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shinde, A., J. S. Paez, S. Libring, K. Hopkins, L. Solorio, and M. K. Wendt. Transglutaminase-2 facilitates extracellular vesicle-mediated establishment of the metastatic niche. Oncogenesis. 9:1–12, 2020.

    Article  Google Scholar 

  25. Sorokin, D. V., I. Peterlik, V. Ulman, D. Svoboda, T. Necasova, K. Morgaenko, L. Eiselleova, L. Tesarova, and M. Maska. FiloGen: a model-based generator of synthetic 3-D time-lapse sequences of single motile cells with growing and branching filopodia. IEEE Trans. Med. Imaging. 37:2630–2641, 2018.

    Article  PubMed  Google Scholar 

  26. Svoboda, D., and V. Ulman. MitoGen: a framework for generating 3D synthetic time-lapse sequences of cell populations in fluorescence microscopy. IEEE Trans. Med. Imaging. 36:310–321, 2017.

    Article  PubMed  Google Scholar 

  27. Tinevez, J. Y., N. Perry, J. Schindelin, G. M. Hoopes, G. D. Reynolds, E. Laplantine, S. Y. Bednarek, S. L. Shorte, and K. W. Eliceiri. TrackMate: an open and extensible platform for single-particle tracking. Methods. 115:80–90, 2017.

    Article  CAS  PubMed  Google Scholar 

  28. Tomasova, L., Z. Guttenberg, B. Hoffmann, and R. Merkel. Advanced 2D/3D cell migration assay for faster evaluation of chemotaxis of slow-moving cells. PLoS ONE. 14:e0219708, 2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ulman, V., M. Maska, K. E. G. Magnusson, O. Ronneberger, C. Haubold, N. Harder, P. Matula, P. Matula, D. Svoboda, M. Radojevic, I. Smal, K. Rohr, J. Jalden, H. M. Blau, O. Dzyubachyk, B. Lelieveldt, P. D. Xiao, Y. X. Li, S. Y. Cho, A. C. Dufour, J. C. Olivo-Marin, C. C. Reyes-Aldasoro, J. A. Solis-Lemus, R. Bensch, T. Brox, J. Stegmaier, R. Mikut, S. Wolf, F. A. Hamprecht, T. Esteves, P. Quelhas, O. Demirel, L. Malmstrom, F. Jug, P. Tomancak, E. Meijering, A. Munoz-Barrutia, M. Kozubek, and C. Ortiz-de-Solorzano. An objective comparison of cell-tracking algorithms. Nat. Methods. 14:1141–1152, 2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vicente-Manzanares, M., and A. R. Horwitz. Cell migration: an overview. Methods Mol. Biol. 769:1–24, 2011.

    Article  CAS  PubMed  Google Scholar 

  31. Webb, D. J., and A. F. Horwitz. New dimensions in cell migration. Nat. Cell Biol. 5:690–692, 2003.

    Article  CAS  PubMed  Google Scholar 

  32. Zantl, R., and E. Horn. Chemotaxis of slow migrating mammalian cells analysed by video microscopy. In: Cell Migration: Developmental Methods and Protocols, edited by C. M. Wells, and M. Parsons. Totowa, NJ: Humana Press, 2011, pp. 191–203.

    Chapter  Google Scholar 

  33. Zengel, P., A. Nguyen-Hoang, C. Schildhammer, R. Zantl, V. Kahl, and E. Horn. μ-Slide chemotaxis: a new chamber for long-term chemotaxis studies. BMC Cell Biol. 12:21, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zicha, D., G. A. Dunn, and A. F. Brown. A new direct-viewing chemotaxis chamber. J. Cell Sci. 99:769–775, 1991.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by Eli Lilly and Company.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luis Solorio or Pavlos P. Vlachos.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Associate Editor Stefan M. Duma oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 24189 kb)

Supplementary file2 (TIF 1943 kb)

Supplementary file3 (MP4 1363 kb)

Supplementary file4 (MP4 1026 kb)

Supplementary file5 (MP4 2154 kb)

Supplementary file6 (MP4 648 kb)

Supplementary file7 (MP4 562 kb)

Supplementary file8 (MP4 836 kb)

Supplementary file9 (MP4 2573 kb)

Supplementary file10 (MP4 2525 kb)

Supplementary file11 (MP4 2707 kb)

Supplementary file12 (MP4 10763 kb)

Supplementary file13 (MP4 6950 kb)

Supplementary file14 (MP4 7118 kb)

Supplementary file15 (MP4 1686 kb)

Supplementary file16 (MP4 528 kb)

Supplementary file17 (MP4 559 kb)

Supplementary file18 (MP4 654 kb)

Supplementary file19 (MP4 762 kb)

Supplementary file20 (MP4 407 kb)

Supplementary file21 (MP4 943 kb)

Supplementary file22 (MP4 1125 kb)

Supplementary file23 (MP4 3415 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jun, B.H., Ahmadzadegan, A., Ardekani, A.M. et al. Multi-feature-Based Robust Cell Tracking. Ann Biomed Eng 51, 604–617 (2023). https://doi.org/10.1007/s10439-022-03073-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-022-03073-1

Keywords

Navigation