Skip to main content

Advertisement

Log in

Wavelet Based Filters for Artifact Elimination in Electroencephalography Signal: A Review

  • S.I. : 50Th Anniversary Reviews
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Electroencephalography (EEG) is a diagnostic test that records and measures the electrical activity of the human brain. Research investigating human behaviors and conditions using EEG has increased from year to year. Therefore, an efficient approach is vital to process the EEG dataset to improve the output signal quality. The wavelet is one of the well-known approaches for processing the EEG signal in time–frequency domain analysis. The wavelet is better than the traditional Fourier Transform because it has good time–frequency localized properties and multi-resolution analysis where the transient information of an EEG signal can be extracted efficiently. Thus, this review article aims to comprehensively describe the application of the wavelet method in denoising the EEG signal based on recent research. This review begins with a brief overview of the basic theory and characteristics of EEG and the wavelet transform method. Then, several wavelet-based methods commonly applied in EEG dataset denoising are described and a considerable number of the latest published EEG research works with wavelet applications are reviewed. Besides, the challenges that exist in current EEG-based wavelet method research are discussed. Finally, alternative solutions to mitigate the issues are recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Abbreviations

AC:

Alternating current

AMUSE:

Algorithms for multiple unknown signals extraction

AWICA:

Automatic wavelet independent component analysis

BIT:

Brain imaging tools

BSS:

Blind source separation

EEG:

Electroencephalography

CCA:

Canonical correlation analysis

CWT:

Continuous wavelet transform

DC:

Direct current

DFA:

Detrended fluctuation analysis

DOST:

Discrete orthonormal S-Transform

DWT:

Discrete wavelet transform

ECG:

Electrocardiography

EMD:

Empirical mode decomposition

EMG:

Electromyography

EOG:

Electrooculography

ERP:

Event-related potentials

fMRI:

Functional magnetic resonance imaging

FRWT:

Fractional wavelet transform

FT:

Fourier transform

FWT:

Fast wavelet transform

GSR:

Galvanic skin response

GUI:

Graphical user interface

Hz:

Hertz

IDWT:

Inverse discrete wavelet transform

JADE:

Joint approximate diagonalization

MEG:

Magnetoencephalography

MRI:

Magnetic resonance imaging

MSE:

Mean square error

mV:

Millivolt

NIRS:

Near-infrared spectroscopy

NREM:

Non-rapid eye movement sleep

PCA:

Principal component analysis

PET:

Positron emission tomography

PSNR:

Peak-to-noise signal ratio

SOBI:

Second order blind identification

STFT:

Short-time Fourier transform

SWT:

Stationary wavelet transform

VMD:

Variational mode decomposition

WPD:

Wavelet packet decomposition

References

  1. Abdi, Z., A. Alyasseri, and S. Member. EEG signals denoising using optimal wavelet transform hybridized with efficient metaheuristic methods. Neural Eng. Inf. 8:10584–10605, 2020

    Google Scholar 

  2. Abdullah, A. K., Z. C. Zhu, L. Siyao, and S. M. Hussein. Blind source separation techniques based eye blinks rejection in EEG signals. Inf. Technol. J. 13(3):4010–1013, 2014. https://doi.org/10.3923/itj.2014.401.413

    Article  Google Scholar 

  3. Achmamad, A., and A. Jbari. A comparative study of wavelet families for electromyography signal classification based on discrete wavelet transform. Bull. Electr. Eng. Inform. 9(4):1420–1429, 2020

    Article  Google Scholar 

  4. Akansu, A. N., W. A. Serdijn, and I. W. Selesnick. Emerging applications of wavelets: a review. Phys. Commun. 3(1):1–18, 2010. https://doi.org/10.1016/j.phycom.2009.07.001

    Article  Google Scholar 

  5. Akhtar, M. T., W. Mitsuhashi, and C. J. James. Employing spatially constrained ICA and wavelet denoising, for automatic removal of artifacts from multichannel EEG data. Signal Process. 92(2):401–416, 2012. https://doi.org/10.1016/j.sigpro.2011.08.005

    Article  Google Scholar 

  6. Al-kadi, M., and M. Marufuzzaman. Effectiveness of wavelet denoising on electroencephalogram signals. J. Appl. Res. Technol. 11(1):156–160, 2013. https://doi.org/10.1016/S1665-6423(13)71524-4

    Article  Google Scholar 

  7. Al-qazzaz, N. K., S. Hamid, B. Mohd, and S. A. Ahmad. Selection of mother wavelet functions for multi-channel EEG signal analysis during a working memory task. Sensors. 15(11):29015–29035, 2015. https://doi.org/10.3390/s151129015

    Article  PubMed  PubMed Central  Google Scholar 

  8. Aliyu, I., and C. G. Lim. Selection of optimal wavelet features for epileptic EEG signal classification with LSTM. Neural Comput. Appl. 2021. https://doi.org/10.1007/s00521-020-05666-0

    Article  Google Scholar 

  9. Alotaiby, T., F. E. A. El-Samie, S. A. Alshebeili, and I. Ahmad. A review of channel selection algorithms for EEG signal processing. EURASIP J. Adv. Signal Process. 66:1–21, 2015. https://doi.org/10.1186/s13634-015-0251-9

    Article  Google Scholar 

  10. Atangana, R., D. Tchiotsop, G. Kenne, and N. L. C. Djoufack. Suitable mother wavelet selection for EEG signals analysis: frequency bands decomposition and discriminative feature selection. Int. J. Signal Process. 11(1):33–49, 2020. https://doi.org/10.5121/sipij.2020.11104

    Article  Google Scholar 

  11. Balamareeswaran, M., and D. Ebenezer. Denoising of EEG signals using discrete wavelet transform based scalar quantization. Biomed. Pharma. J.. 8(1):399–406, 2015

    Article  Google Scholar 

  12. Bekkouche, H., M. Barret, and J. Oksman. Adapted generalized lifting schemes for scalable lossless image coding. Signal Process. 88(11):2790–2803, 2008. https://doi.org/10.1016/j.sigpro.2008.06.003

    Article  Google Scholar 

  13. Biasiucci, A., B. Franceschiello, and M. M. Murray. Electroencephalography. Curr Biol. 29(3):80–85, 2019. https://doi.org/10.1016/j.cub.2018.11.052

    Article  CAS  Google Scholar 

  14. Borse, P. S. EEG de-noising using wavelet transform and fast ICA. Int. J. Innov. Scie. Eng. Tech. 2(7):200–205, 2015

    Google Scholar 

  15. Burger, C., and D. H. D. J. Van. Removal of EOG artifacts by combining wavelet neural network and independent component analysis. Biomed Signal Process. Control. 15:67–79, 2015. https://doi.org/10.1016/j.bspc.2014.09.009

    Article  Google Scholar 

  16. Castellanos, N. P., and V. A. Makarov. Recovering EEG brain signals: artifact suppression with wavelet enhanced independent component analysis. J. Neurosci. Methods. 158(2):300–312, 2006. https://doi.org/10.1016/j.jneumeth.2006.05.033

    Article  PubMed  Google Scholar 

  17. Celik, E., P. O. Durdu, and S. I. Omurca. Emotion recognition with wavelet transforms from EEG signals. In: 1st International Informatics and Software Engineering Conference: Innovative Technologies for Digital Transformation, IISEC 2019 - Proceedings. Ankara, Turkey, pp. 1–4, 2019.https://doi.org/10.1109/UBMYK48245.2019.8965632

  18. Chen, C. C., and F. R. Tsui. Comparing different wavelet transforms on removing electrocardiogram baseline wanders and special trends. BMC Med. Inform. Decis. Mak. 20(11):1–10, 2020. https://doi.org/10.1186/s12911-020-01349-x

    Article  CAS  Google Scholar 

  19. Choudhry, M. S, and R. Kapoor. A survey on different discrete wavelet transforms and thresholding techniques for EEG denoising. In: International Conference on Computing, Communication, and Automation. Greater Noida, India, pp. 29–30 April, 2016.

  20. Cong, F. Blind source separation. In: EEG Signal Processing and Feature Extraction. Singapore: Springer, pp. 117–140, 2019. https://doi.org/10.1007/978-981-13-9113-2_7

  21. Daly, I. Removal of physiological artifacts from simultaneous EEG and fMRI recordings. Clin. Neurophysiol. 132(10):2371–2383, 2021. https://doi.org/10.1016/j.clinph.2021.05.036

    Article  PubMed  Google Scholar 

  22. Daud, S. N. S. S., and R. Sudirman. Decomposition level comparison of stationary wavelet transform filter for visual task electroencephalography. J. Teknol. 74(6):7–13, 2015

    Google Scholar 

  23. Daud, S. S., and R. Sudirman. Butterworth bandpass and stationary wavelet transform filter comparison for electroencephalography signal. In: 6th International Conference on Intelligent Systems, Modelling and Simulation, Kuala Lumpur, Malaysia, 9–12 February, 2015. https://doi.org/10.1109/ISMS.2015.29

  24. Dong, N., W. Zhang, Z. Wu, Y. Li, W. Xu, C. Ma, and Z. Gao. Regression analysis of EEG signals in fatigue driving based on ensemble learning. EPL. 134(5):1–7, 2021. https://doi.org/10.1209/0295-5075/134/50003

    Article  CAS  Google Scholar 

  25. Frikha, T., N. Abdennour, F. Chaabane, O. Ghorbel, R. Ayedi, O. R. Shahin, and O. Cheikhrouhou. Source localization of EEG brainwaves activities via mother wavelets families for SWT decomposition. J. Healthc. Eng. 2021. https://doi.org/10.1155/2021/9938646

    Article  PubMed  PubMed Central  Google Scholar 

  26. Garg, S., and R. Narvey. Denoising and feature extraction of EEG signal using wavelet transform. Int. J. Eng. Scie. Tech. 5(6):1249–1253, 2013

    Google Scholar 

  27. Gorji, H. T., A. Koohpayezadeh, and J. Haddadnia. Ocular artifact detection and removing from EEG by wavelet families: a comparative study. J. Inf. Eng. Appli. 3(13):39–48, 2013

    Google Scholar 

  28. Guo, C. The application of fractional wavelet transform in image enhancement. Int. J. Comput. Appl. 2021. https://doi.org/10.1080/1206212X.2019.1626573

    Article  Google Scholar 

  29. Gupta, V., and M. Mittal. Arrhythmia detection in ECG signal using fractional wavelet transform with principal component analysis. J. Inst. Eng. (India) Ser. B. 101(6):1–11, 2020. https://doi.org/10.1007/s40031-020-00488-z

    Article  Google Scholar 

  30. Harender, B., and R. K. Sharma. EEG signal denoising based on wavelet transform. In: Proceedings of the International Conference on Electronics, Communication and Aerospace Technology, Coimbatore, India. 2–4 December, 2017. https://doi.org/10.1109/ICECA.2017.8203645

  31. Hubbard, B. B. The Fast Wavelet Transform. The World Accordingly to Wavelets. London: CRC Press, 2020. https://doi.org/10.1201/9781439864555-24

    Book  Google Scholar 

  32. Husseen, A. H., J. Emmanual, L. Sun, and I. Emmanuel. Complexity measures for quantifying changes in electroencephalogram in Alzheimer’s disease. Complexity. 2018. https://doi.org/10.1155/2018/8915079

    Article  Google Scholar 

  33. Inuso, G., F. La Foresta, N. Mammone, and F. C. Morabito. Wavelet-ICA methodology for efficient artifact removal from electroencephalographic recordings. In: IEEE International Conference on Neural Networks, Shenzen, China, 18–22 July, 2007. https://doi.org/10.1109/IJCNN.2007.4371184

  34. Islam, M. K., A. Rastegarnia, and Z. Yang. Methods for artifact detection and removal from scalp EEG: A review. Neurophysiol Clin. 46(4–5):287–305, 2016. https://doi.org/10.1016/j.neucli.2016.07.002

    Article  PubMed  Google Scholar 

  35. Issa, M. F., and Z. Juhasz. Improved EOG artifact removal using wavelet enhanced independent component analysis. Brain Sci. 9(12):1–22, 2019. https://doi.org/10.3390/brainsci9120355

    Article  CAS  Google Scholar 

  36. Issa, M. F., G. Tuboly, G. Kozmann, and Z. Juhasz. Automatic ECG artifact removal from EEG signals. Meas. Sci. Rev. 19(3):101–108, 2019. https://doi.org/10.2478/msr-2019-0016

    Article  Google Scholar 

  37. Jang, Y. I., J. Y. Sim, J. R. Yang, and N. K. Kwon. The optimal selection of mother wavelet function and decomposition level for denoising of dcg signal. Sensors. 21(5):1–17, 2021. https://doi.org/10.3390/s21051851

    Article  Google Scholar 

  38. Jiang, X., G. B. Bian, and Z. Tian. Removal of artifacts from EEG signals: a review. Sensors (Switzerland). 19(5):1–18, 2019. https://doi.org/10.3390/s19050987

    Article  Google Scholar 

  39. Jothimani, S., and A. Suganya. Denoising of EEG gesture using DWT. Int. J. Recent Tech. Eng. 7(6S4):522–527, 2019

    Google Scholar 

  40. Kanika, E., N. Dhillon, and E. K. Sharama. Comparative analysis of discrete wavelet transform and fast wavelet transform on image compression. Int. J. Eng. Research Tech. 1(5):1–7, 2012

    Google Scholar 

  41. Kappenman, E. S., J. L. Farrens, W. Zhang, A. X. Stewart, and S. J. Luck. ERP CORE: an open resource for human event-related potential research. NeuroImage. 225(117465):1–12, 2021. https://doi.org/10.1016/j.neuroimage.2020.117465

    Article  Google Scholar 

  42. Kaur, C., A. Bisht, P. Singh, and G. Joshi. EEG signal denoising using hybrid approach of variational mode decomposition and wavelets for depression. Biomed Signal Process. Control. 65(102337):1–10, 2021. https://doi.org/10.1016/j.bspc.2020.102337

    Article  Google Scholar 

  43. Kaur, S., and S. Malhotra. Various techniques for denoising EEG signal: a review. Int. J. Eng. Comp. Scie. 3(8):7965–7973, 2014

    Google Scholar 

  44. Kaushal, G., V. K. Jain, and A. Singh. Removal of power line interference from EEG using Wavelet-ICA. In: International Conference on Advancements in Engineering and Technology, Sangrur, Punjab, 30–31 August, 2015

  45. Kharbat, F., S. Nashwan, and S. Ashraf. General model for best feature extraction of EEG using discrete wavelet transform wavelet family and differential evolution. Int. J. Distrib. Sens. Netw. 16(3):1–21, 2020. https://doi.org/10.1177/1550147720911009

    Article  Google Scholar 

  46. Khatun, S., R. Mahajan, and B. I. Morshed. Comparative analysis of wavelet based approaches for reliable removal of ocular artifacts from single channel EEG. In: International Conference of Electro/Information Technology. 21–23 May, 2015.

  47. Kumar, B. K. Denoising of EEG signal using Matlab and SIMULINK techniques and estimation of power spectral density of EEG signal using SIMULINK AR models. Int. J. Eng. Tech. 9(2):418–422, 2019

    Google Scholar 

  48. Kumar, N. N., and A. G. Reddy. Removal of ECG artifact from EEG data using independent component analysis and S-transform. Int. J. Sci. Eng. Tech. Resear. 5:712–716, 2016

    Google Scholar 

  49. Kumar, A., H. Tomar, V. Kumar, and R. Komaragiri. Stationary wavelet transform based ECG signal denoising method. ISA Trans. 114:251–262, 2021. https://doi.org/10.1016/j.isatra.2020.12.029

    Article  PubMed  Google Scholar 

  50. Li, W., W. Qin, H. Liu, L. Fan, J. Wang, T. Jiang, and C. Yu. Subregions of the human superior frontal gyrus and their connections. NeuroImage. 78:46–58, 2013. https://doi.org/10.1016/j.neuroimage.2013.04.011

    Article  PubMed  Google Scholar 

  51. Liu, Q., A. Liu, X. Zhang, X. Chen, R. Qian, and X. Chen. Removal of EMG artifacts from multichannel EEG signals using combined singular spectrum analysis and canonical correlation analysis. J. Healthc. Eng. 2019. https://doi.org/10.1155/2019/4159676

    Article  PubMed  PubMed Central  Google Scholar 

  52. Mahajan, R., and B. I. Morshed. Sample entropy enhanced wavelet-ICA denoising technique for eye blink artifact removal from scalp EEG dataset. In: International IEEE/EMBS Conference on Neural Engineering. San Diego, USA, 6–8 November, 2013. https://doi.org/10.1109/NER.2013.6696203

  53. Merah, M., T. A. Abdelmalik, and B. H. Larbi. R-peaks detection based on stationary wavelet transform. Comput. Methods Programs Biomed. 121(3):149–160, 2015. https://doi.org/10.1016/j.cmpb.2015.06.003

    Article  CAS  PubMed  Google Scholar 

  54. Michel, C. M., and M. M. Murray. Towards the utilization of EEG as a brain imaging tool. NeuroImage. 61(2):371–385, 2012. https://doi.org/10.1016/j.neuroimage.2011.12.039

    Article  PubMed  Google Scholar 

  55. Mohammadi, Z., J. Frounchi, and M. Amiri. Wavelet-based emotion recognition system using EEG signal. Neural. Comput. Appl. 28:1985–1990, 2017. https://doi.org/10.1007/s00521-015-2149-8

    Article  Google Scholar 

  56. Mowla, R., S. Ng, and M. S. A. Zilany. Artifacts-matched blind source separation and wavelet transform for multichannel EEG denoising. Biomed. Signal Process. Control. 22:111–118, 2015. https://doi.org/10.1016/j.bspc.2015.06.009

    Article  Google Scholar 

  57. Muller-Putz, G. R. Electroencephalography. In: Handbook of Clinical Neurology. Elsevier, UK, 2020. https://doi.org/10.1016/B978-0-444-63934-9.00018-4

  58. Mumtaz, W., S. Rasheed, and A. Irfan. Review of challenges associated with the EEG artifact removal methods. Biomed. Signal Process Control. 68:1–13, 2021. https://doi.org/10.1016/j.bspc.2021.102741

    Article  Google Scholar 

  59. Muñoz-Gutiérrez, P. A., E. Giraldo, M. Bueno-López, and M. Molinas. Localization of active brain sources from EEG signals using empirical mode decomposition: a comparative study. Front. Integr. Neurosci. 12(5):1–14, 2018. https://doi.org/10.3389/fnint.2018.00055

    Article  Google Scholar 

  60. Naeem, M. M. M., K. M. Ahmad, S. Kang, and M. Y. Jeong. Effect of EOG signal filtering on the removal of ocular artifacts and EEG-based brain-computer interface: a comprehensive study. Complexity. 2018. https://doi.org/10.1155/2018/4853741

    Article  Google Scholar 

  61. Naga, R., S. Chandralingam, T. Anjaneyulu, and K. Satyanarayana. Denoising EOG signal using stationary wavelet transform. Meas. Sci. Rev. 12(2):46–51, 2012. https://doi.org/10.2478/v10048-012-0010-0

    Article  Google Scholar 

  62. Noorbasha, S. K., and G. F. Sudha. Removal of EOG artifacts and separation of different cerebral activity components from single channel EEG-An efficient approach combining SSA – ICA with wavelet thresholding for BCI applications. Biomed Signal Process Control. 63(102168):1–12, 2021. https://doi.org/10.1016/j.bspc.2020.102168

    Article  Google Scholar 

  63. Ok, F., and R. Rajesh. Empirical mode decomposition of EEG signals for the effectual classification of seizures. In: Advances in Neural Signal Processing. United Kingdom: IntechOpen Limited, pp. 1–13, 2020. https://doi.org/10.5772/intechopen.89017

  64. Oosugi, N., K. Kitajo, N. Hasegawa, Y. Nagasaka, K. Okanoya, and N. Fujii. A new method for quantifying the performance of EEG blind source separation algorithms by referencing a simultaneously recorded ECoG signal. Neural Netw. 93:1–6, 2017. https://doi.org/10.1016/j.neunet.2017.01.005

    Article  PubMed  Google Scholar 

  65. Ouahabi, A. A review of wavelet denoising in medical imaging. In: International Workshop on Systems, Signal Processing and Their Applications, Tipaza, Algeria. 9–11 May, 2013. https://doi.org/10.1109/WoSSPA.2013.6602330

  66. Patil, S. S. Quality advancement of EEG by wavelet denoising for biomedical analysis. In: International Conference on Computing, Communication, and Automation. Greater Noida, India, 26–28 July.

  67. Peng, W. EEG preprocessing and denoising. In: EEG signal processing and feature extraction. Switzerland: Springer Nature, pp. 71–87, 2019. https://doi.org/10.1007/978-981-13-9113-2_5

  68. Pizurica, A., L. Jovanov, B. Huysmans, V. Zlokolica, P. De Keyser, F. Dhaenens, and W. Philips. Multiresolution denoising for optical coherence tomography: a review and evaluation. Curr. Med. Imaging Rev. 4(4):270–284, 2008. https://doi.org/10.2174/157340508786404044

    Article  Google Scholar 

  69. Pizurica, A., A. Wink, E. Vansteenkiste, W. Philips, and B. J. Roerdink. A review of wavelet denoising in MRI and ultrasound brain imaging. Curr. Med. Imaging Rev. 2(2):247–260, 2006. https://doi.org/10.2174/157340506776930665

    Article  Google Scholar 

  70. Ranjan, R., S. B. Chandra, and B. A. Kumar. Ocular artifact elimination from electroencephalography signals: a systematic review. Biocybern. Biomed. Eng. 41(3):960–996, 2021. https://doi.org/10.1016/j.bbe.2021.06.007

    Article  Google Scholar 

  71. Rao, R. M. Wavelet transforms: Introduction to theory and applications. J. Electron. Imaging. 1999. https://doi.org/10.1117/1.482718

    Article  Google Scholar 

  72. Rhif, M., A. B. Abbes, I. R. Farah, B. Martínez, and Y. Sang. Wavelet transform application for/in non-stationary time-series analysis: a review. Appl. Sci. (Switzerland). 9(7):1–22, 2019. https://doi.org/10.3390/app9071345

    Article  Google Scholar 

  73. Rodrigo, G., F. M. de Azevedo, C. Fredel, R. Walz. Wavelet filter to attenuate the background activity and high frequencies in EEG signals applied in the automatic identification of epileptiform events. In: Practical Applications in Biomedical Engineering. United Kingdom: IntechOpen Limited, pp. 81–102, 2013. https://doi.org/10.5772/53585

  74. Rodrigues, J., M. Weiß, J. Hewig, and J. J. B. Allen. EPOS: EEG processing open-source scripts. Front Neurosci. 15:1–22, 2021. https://doi.org/10.3389/fnins.2021.660449

    Article  Google Scholar 

  75. Saavedra, C., and L. Bougrain. Denoising and time-window selection using wavelet-based semblance for improving ERP detection. Brain Comp Interface, 2013

  76. Sabbagh, D., P. Ablin, G. Varoquaux, A. Gramfort, and D. A. Engemann. Predictive regression modeling with MEG/EEG: from source power to signals and cognitive states. NeuroImage. 222(116893):1–20, 2020. https://doi.org/10.1016/j.neuroimage.2020.116893

    Article  Google Scholar 

  77. Safara, F., S. Doraisamy, A. Azman, A. Jantan, and R. A. R. Abdullah. Multi-level basis selection of wavelet packet decomposition tree for heart sound classification. Comput. Biol. Med. 43(1):1407–1414, 2013. https://doi.org/10.1016/j.compbiomed.2013.06.016

    Article  PubMed  Google Scholar 

  78. Salankar, N., P. Mishra, and L. Garg. Emotion recognition from EEG signals using empirical mode decomposition and second-order difference plot. Biomed. Signal Process. Control. 65:1–13, 2021. https://doi.org/10.1016/j.bspc.2020.102389

    Article  Google Scholar 

  79. Sang, Y. F. A practical guide to discrete wavelet decomposition of hydrologic time series. Water Resour. Manag. 26(11):3345–3365, 2012. https://doi.org/10.1007/s11269-012-0075-4

    Article  Google Scholar 

  80. Seena, V., and J. Yomas. A review on feature extraction and denoising of ECG signal using wavelet transform. In: Proceedings of the IEEE International Caracas Conference on Devices, Circuits and Systems, Combiatore, India. 6–8 March, 2014. https://doi.org/10.1109/ICDCSyst.2014.6926190

  81. Shahbakhti, M., A. Santos, P. Augustyniak, and A. Broniec-wójcik. SWT-kurtosis based algorithm for elimination of electrical shift and linear trend from EEG signals. Biomed. Signal Process. Control. 65(102373):1–8, 2021. https://doi.org/10.1016/j.bspc.2020.102373

    Article  Google Scholar 

  82. Shahlaei, F., S. Banakar, and H. Salempoor. Feature classification of EEG signal using signal energy in multi-resolution analysis (MRA) and radial basis function (RBF) for detecting seizure and epilepsy. Int. J. Electromagnetic App. 7(1):1–8, 2017. https://doi.org/10.5923/j.ijea.20170701.01

    Article  Google Scholar 

  83. Sheoran, M., S. Kumar, and A. Kumar. Wavelet-ICA based denoising of electroencephalogram signal. Int. J. Inf. Comp. Tech. 4(12):1205–1210, 2014

    Google Scholar 

  84. Shidahara, M., Y. Ikoma, J. Kershaw, Y. Kimura, M. Naganawa, and H. Watabe. PET kinetic analysis: Wavelet denoising of dynamic PET data with application to parametric imaging. Ann. Nucl. Med. 21(7):379–386, 2007. https://doi.org/10.1007/s12149-007-0044-9

    Article  PubMed  Google Scholar 

  85. Sunwoo, S. H., S. I. Han, H. Joo, G. D. Cha, D. Kim, S. H. Choi, and D. H. Kim. Advances in soft bioelectronics for brain research and clinical neuroengineering. Matter. 3(6):1923–1947, 2020. https://doi.org/10.1016/j.matt.2020.10.020

    Article  Google Scholar 

  86. Thamarai, P. An effective method to denoise EEG, ECG, and PPG signals based on Meyer wavelet transform. Int. J. Eng. Tech. 119(16):1959–1971, 2018

    Google Scholar 

  87. Thejaswini, S., and K. M. Ravikumar. Detection of human emotions using features based on discrete wavelet transforms of EEG signals. Int. J. Eng. Tech. (UAE). 7(1.9):119–122, 2018

    Article  Google Scholar 

  88. Tian, L., J. Zheng, and L. Xiong. Current status and prospects in brain research projects. Chin. J. Anesthesiol. 12:8–11, 2021. https://doi.org/10.3760/cma.j.cn131073.20200916.00104

    Article  Google Scholar 

  89. Tuncer, T., S. Dogan, G. R. Naik, and P. Pławiak. Epilepsy attacks recognition based on 1D octal pattern, wavelet transform and EEG signals. Multimed. Tools. 80(7):25197–25219, 2021. https://doi.org/10.1007/s11042-021-10882-4

    Article  Google Scholar 

  90. Upadhyay, R., P. K. Padhy, and P. K. Kankar. EEG artifact removal and noise suppression by Discrete. Comput. Electr. Eng. 53:125–142, 2016. https://doi.org/10.1016/j.compeleceng.2016.05.015

    Article  Google Scholar 

  91. Volpert, E. H. I., G. E. Page, and B. D. Bartholow. Using multilevel models for the analysis of event-related potentials. Int. J. Psychophysio. 162:145–156, 2021. https://doi.org/10.1016/j.ijpsycho.2021.02.006

    Article  Google Scholar 

  92. Wahlund, L. O. Structural brain imaging as a diagnostic tool in dementia, why and how? Psychiatry Res. 306(111183):1–4, 2020. https://doi.org/10.1016/j.pscychresns.2020.111183

    Article  Google Scholar 

  93. Wang, S. H., Y. D. Zhang, Z. Dong, and P. Phillips. Wavelet families and variants. In: Brain informatics and health. Singapore: Springer, pp. 85–104, 2018. https://doi.org/10.1007/978-981-10-4026-9_6

  94. Witteveen, J., P. Pradhapan, and V. Mihajlovic. Comparison of a pragmatic and regression approach for wearable EEG signal quality assessment. IEEE J. Biomed. Heal. Informatics. 24(3):735–746, 2020. https://doi.org/10.1109/JBHI.2019.2920381

    Article  Google Scholar 

  95. Wu, J., T. Zhou, and T. Li. Detecting epileptic seizures in EEG signals with complementary ensemble empirical mode decomposition and extreme gradient boosting. Entropy. 22(2):1–25, 2020. https://doi.org/10.3390/e22020140

    Article  Google Scholar 

  96. Xie, Y., and S. Oniga. A review of processing methods and classification algorithm for EEG signal. Carpathian J. Elec. Comp. Eng. 2020. https://doi.org/10.2478/cjece-2020-0004

    Article  Google Scholar 

  97. Yang, X., Y. Shi, L. Chen, and Z. Quan. The lifting scheme for wavelet Bi-frames: theory, structure, and algorithm. IEEE Trans. Image Process. 19(3):612–624, 2010. https://doi.org/10.1109/TIP.2009.2038762

    Article  PubMed  Google Scholar 

  98. Yang, Z. J. Wavelet transforms: theory and applications. Systems, control and information. In: Wavelet Theory. United Kingdom: IntechOpen Limited, pp. 1–17, 2002. https://doi.org/10.11509/isciesci.46.10_652

  99. Yu, M. Removal methods of EMG Artifacts from EEG signals. In: 2nd International Conference on Electrical, Electronic Information and Communication Engineering, Tianjin, China, 16–18 April, 2021. https://doi.org/10.1088/1742-6596/1920/1/012076

  100. Zhang, X. The influences of brand awareness on consumers’ cognitive process: An event-related potentials study. Front. Neurosci. 14(549):1–7, 2020. https://doi.org/10.3389/fnins.2020.00549

    Article  PubMed  PubMed Central  Google Scholar 

  101. Zhang, Y., B. Liu, X. Ji, and D. Huang. Classification of EEG signals based on autoregressive model and wavelet packet decomposition. Neural Process. Lett. 45:365–378, 2017. https://doi.org/10.1007/s11063-016-9530-1

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support provided by the Malaysia Ministry of Higher Education and Universiti Teknologi Malaysia under UTMER grant Q.J130000.2651.17J69 and UTMER grant Q.J130000.3851.20J75. One of the authors, Syarifah Noor Syakiylla Binti Sayed Daud is a Researcher of Universiti Teknologi Malaysia under the Post-Doctoral Fellowship Scheme (Q.J130000.21A2.05E52) for the Project: “Brain Features Extraction using Wavelet Transform Approach for Detection of Visual Memory Improvement and Stress Reduction”.

Conflict of interest

The authors declare there is no conflict of interest for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syarifah Noor Syakiylla Sayed Daud.

Additional information

Associate Editor Stefan M. Duma oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daud, S.N.S.S., Sudirman, R. Wavelet Based Filters for Artifact Elimination in Electroencephalography Signal: A Review. Ann Biomed Eng 50, 1271–1291 (2022). https://doi.org/10.1007/s10439-022-03053-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-022-03053-5

Keywords

Navigation