Skip to main content
Log in

Mechanical Regulation of Apoptosis in the Cardiovascular System

  • Review
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Apoptosis is a highly conserved physiological process of programmed cell death which is critical for proper organism development, tissue maintenance, and overall organism homeostasis. Proper regulation of cell removal is crucial, as both excessive and reduced apoptotic rates can lead to the onset of a variety of diseases. Apoptosis can be induced in cells in response to biochemical, electrical, and mechanical stimuli. Here, we review literature on specific mechanical stimuli that regulate apoptosis and the current understanding of how mechanotransduction plays a role in apoptotic signaling. We focus on how insufficient or excessive mechanical forces may induce apoptosis in the cardiovascular system and thus contribute to cardiovascular disease. Although studies have demonstrated that a broad range of mechanical stimuli initiate and/or potentiate apoptosis, they are predominantly correlative, and no mechanisms have been established. In this review, we attempt to establish a unifying mechanism for how various mechanical stimuli initiate a single cellular response, i.e. apoptosis. We hypothesize that the cytoskeleton plays a central role in this process as it does in determining myriad cell behaviors in response to mechanical inputs. We also describe potential approaches of using mechanomedicines to treat various diseases by altering apoptotic rates in specific cells. The goal of this review is to summarize the current state of the mechanobiology field and suggest potential avenues where future research can explore.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

(a–d) Images are adapted from Narula et al.96

Figure 4

(a–c) Images are adapted from Jian et al.60 (d–g) Images are adapted from Tanaka, et al.133.

Figure 5
Figure 6
Figure 7
Figure 8

Images are adapted from Cirka et al.18, and Goldblatt et al.39.

Figure 9
Figure 10

Figure is adapted from Chan et al.11

Figure 11

Similar content being viewed by others

References

  1. Anesti, V., and L. Scorrano. The relationship between mitochondrial shape and function and the cytoskeleton. Biochim. Biophys. Acta Bioenerg. 1757:692–699, 2006.

    CAS  Google Scholar 

  2. Aragona, M., T. Panciera, A. Manfrin, S. Giulitti, F. Michielin, N. Elvassore, S. Dupont, and S. Piccolo. A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell 154:1047–1059, 2013.

    CAS  PubMed  Google Scholar 

  3. Araki, S., Y. Shimada, K. Kaji, and H. Hayashi. Apoptosis of vascular endothelial cells by fibroblast growth factor deprivation. Biochem. Biophys. Res. Commun. 168:1194–1200, 1990.

    CAS  PubMed  Google Scholar 

  4. Arstall, M. A., D. B. Sawyer, R. Fukazawa, and R. A. Kelly. Cytokine-mediated apoptosis in cardiac myocytes. Circ. Res. 85:829–840, 1999.

    CAS  PubMed  Google Scholar 

  5. Asakura, T., and T. Karino. Flow patterns and spatial distribution of atherosclerotic lesions in human coronary arteries. Circ. Res. 66:1045–1066, 1990.

    CAS  PubMed  Google Scholar 

  6. Bailey, R. W., T. Nguyen, L. Robertson, E. Gibbons, J. Nelson, R. E. Christensen, J. P. Bell, A. M. Judd, and J. D. Bell. Sequence of physical changes to the cell membrane during glucocorticoid-induced apoptosis in S49 lymphoma cells. Biophys. J. 96:2709–2718, 2009.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Banerjee, I., J. Zhang, T. Moore-Morris, E. Pfeiffer, K. S. Buchholz, A. Liu, K. Ouyang, M. J. Stroud, L. Gerace, S. M. Evans, A. McCulloch, and J. Chen. Targeted ablation of nesprin 1 and nesprin 2 from murine myocardium results in cardiomyopathy, altered nuclear morphology and inhibition of the biomechanical gene response. PLoS Genet. 10:e1004114, 2014.

    PubMed  PubMed Central  Google Scholar 

  8. Bing, O. H. L. Hypothesis: apoptosis may be a mechanism for the transition to heart failure with chronic Pressure overload. J. Mol. Cell. Cardiol. 26:943–948, 1994.

    CAS  PubMed  Google Scholar 

  9. Bortner, C. D., and J. A. Cidlowski. Ion channels and apoptosis in cancer. Philos. Trans. R. Soc. B 369:1–9, 2014.

    Google Scholar 

  10. Califano, J. P., and C. A. Reinhart-King. Substrate stiffness and cell area predict cellular traction stresses in single cells and cells in contact. Cell. Mol. Bioeng. 3:68–75, 2010.

    PubMed  Google Scholar 

  11. Chan, D. D., W. S. Van Dyke, M. Bahls, S. D. Connell, P. Critser, J. E. Kelleher, M. A. Kramer, S. M. Pearce, S. Sharma, and C. P. Neu. Mechanostasis in apoptosis and medicine. Prog. Biophys. Mol. Biol. 106:517–524, 2011.

    CAS  PubMed  Google Scholar 

  12. Chang, J., M. Xie, V. R. Shah, M. D. Schneider, M. L. Entman, L. Wei, and R. J. Schwartz. Activation of Rho-associated coiled-coil protein kinase 1 (ROCK-1) by caspase-3 cleavage plays an essential role in cardiac myocyte apoptosis. Proc. Natl. Acad. Sci. USA 103:14495–14500, 2006.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Chaudhuri, O., L. Gu, D. Klumpers, M. Darnell, S. A. Bencherif, J. C. Weaver, N. Huebsch, H.-P. Lee, E. Lippens, G. N. Duda, and D. J. Mooney. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat. Mater. 15:326–334, 2015.

    PubMed  PubMed Central  Google Scholar 

  14. Chen, B., G. Kumar, C. C. Co, and C.-C. Ho. Geometric control of cell migration. Sci. Rep. 3:2827, 2013.

    PubMed  PubMed Central  Google Scholar 

  15. Chen, C. S., M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber. Geometric control of cell life and death. Science 276:1425–1428, 1997.

    CAS  PubMed  Google Scholar 

  16. Chiong, M., Z. V. Wang, Z. Pedrozo, D. J. Cao, R. Troncoso, M. Ibacache, A. Criollo, A. Nemchenko, J. Hill, and S. Lavandero. Cardiomyocyte death: mechanisms and translational implications. Cell Death Dis. 2:e244, 2011.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Cirka, H., M. Monterosso, N. Diamantides, J. Favreau, Q. Wen, and K. Billiar. Active traction force response to long-term cyclic stretch is dependent on cell pre-stress. Biophys. J. 110:1845–1857, 2016.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Cirka, H. A., J. Uribe, V. Liang, F. J. Schoen, and K. L. Billiar. Reproducible in vitro model for dystrophic calcification of cardiac valvular interstitial cells: insights into the mechanisms of calcific aortic valvular disease. Lab Chip 17:814–829, 2017.

    CAS  PubMed  Google Scholar 

  19. Clark, R. S. B., P. M. Kochanek, M. Chen, S. C. Watkins, D. W. Marion, J. Chen, R. L. Hamilton, J. E. Loeffert, and S. H. Graham. Increases in Bcl-2 and cleavage of caspase-1 and caspase-3 in human brain after head injury. FASEB J. 13:813–821, 1999.

    CAS  PubMed  Google Scholar 

  20. Clarke, M. C. H., N. Figg, J. J. Maguire, A. P. Davenport, M. Goddard, T. D. Littlewood, and M. R. Bennett. Apoptosis of vascular smooth muscle cells induces features of plaque vulnerability in atherosclerosis. Nat. Med. 12:1075–1080, 2006.

    CAS  PubMed  Google Scholar 

  21. Clarke, M. C. H., T. D. Littlewood, N. Figg, J. J. Maguire, A. P. Davenport, M. Goddard, and M. R. Bennett. Chronic apoptosis of vascular smooth muscle cells accelerates atherosclerosis and promotes calcification and medial degeneration. Circ. Res. 102:1529–1538, 2008.

    CAS  PubMed  Google Scholar 

  22. Codelia, V. A., G. Sun, and K. D. Irvine. Regulation of YAP by mechanical strain through Jnk and Hippo signaling. Curr. Biol. 24:2012–2017, 2017.

    Google Scholar 

  23. Cui, Y., F. M. Hameed, B. Yang, K. Lee, C. Q. Pan, S. Park, and M. Sheetz. Cyclic stretching of soft substrates induces spreading and growth. Nat. Commun. 6:6333–6340, 2015.

    CAS  PubMed  Google Scholar 

  24. Czabotar, P. E., G. Lessene, A. Strasser, and J. M. Adams. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat. Rev. Mol. Cell Biol. 15:49–63, 2014.

    CAS  PubMed  Google Scholar 

  25. Darzynkiewicz, Z., D. Galkowski, and H. Zhao. Analysis of apoptosis by cytometry using TUNEL assay. Methods 44:250–254, 2008.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Darzynkiewicz, Z., and H. Zhao. Detection of DNA strand breaks in apoptotic cells by flow- and image-cytometry. Methods Mol. Biol. 682:91–101, 2011.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Desouza, M., P. W. Gunning, and J. R. Stehn. The actin cytoskeleton as a sensor and mediator of apoptosis. Bioarchitecture 2:75–87, 2012.

    PubMed  PubMed Central  Google Scholar 

  28. Dupont, S., L. Morsut, M. Aragona, E. Enzo, S. Giulitti, M. Cordenonsi, F. Zanconato, J. Le Digabel, M. Forcato, S. Bicciato, N. Elvassore, and S. Piccolo. Role of YAP/TAZ in mechanotransduction. Nature 474:179–183, 2011.

    CAS  PubMed  Google Scholar 

  29. Dweck, M. R., N. A. Boon, and D. E. Newby. Calcific aortic stenosis: a disease of the valve and the myocardium. J. Am. Coll. Cardiol. 60:1854–1863, 2012.

    PubMed  Google Scholar 

  30. Egerbacher, M., S. P. Arnoczky, O. Caballero, M. Lavagnino, and K. L. Gardner. Loss of homeostatic tension induces apoptosis in tendon cells: an in vitro study. Clin. Orthop. Relat. Res. 466:1562–1568, 2008.

    PubMed  PubMed Central  Google Scholar 

  31. Elosegui-Artola, A., I. Andreu, A. E. M. Beedle, A. Lezamiz, M. Uroz, A. J. Kosmalska, R. Oria, J. Z. Kechagia, P. Rico-Lastres, A.-L. L. Le Roux, C. M. Shanahan, X. Trepat, D. Navajas, S. Garcia-Manyes, and P. Roca-Cusachs. Force triggers YAP nuclear entry by regulating transport across nuclear pores. Cell 171:1397–1410.e14, 2017.

    CAS  PubMed  Google Scholar 

  32. Fadeel, B. Plasma membrane alterations during apoptosis: role in corpse clearance. Antioxid. Redox Signal. 6:269–275, 2004.

    CAS  PubMed  Google Scholar 

  33. Farrelly, N., Y.-J. Lee, J. Oliver, C. Dive, and C. H. Streuli. Extracellular matrix regulates apoptosis in mammary epithelium through a control on insulin signaling. Cell 144:1337–1347, 1999.

    CAS  Google Scholar 

  34. Flusberg, D. A., Y. Numaguchi, and D. E. Ingber. Cooperative control of Akt phosphorylation, bcl-2 expression, and apoptosis by cytoskeletal microfilaments and microtubules in capillary endothelial cells. Mol. Biol. Cell 12:3087–3094, 2001.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Freeman, R. V., and C. M. Otto. Spectrum of calcific aortic valve disease: pathogenesis, disease progression, and treatment strategies. Circulation 111:3316–3326, 2005.

    PubMed  Google Scholar 

  36. Fu, R., Q. Liu, G. Song, A. Baik, M. Hu, S. Sun, X. E. Guo, M. Long, and B. Huo. Spreading area and shape regulate apoptosis and differentiation of osteoblasts. Biomed. Mater. 8:055005, 2013.

    PubMed  Google Scholar 

  37. Galluzzi, L., M. C. Maiuri, I. Vitale, H. Zischka, M. Castedo, L. Zitvogel, and G. Kroemer. Cell death modalities: classification and pathophysiological implications. Cell Death Differ. 14:1237–1243, 2007.

    CAS  PubMed  Google Scholar 

  38. Geske, F. J., R. Lieberman, R. Strange, and L. E. Gerschenson. Early stages of p53-induced apoptosis are reversible. Cell Death Differ. 8:182–191, 2001.

    CAS  PubMed  Google Scholar 

  39. Goldblatt, Z. E., H. Ashouri Choshali, H. A. Cirka, V. Liang, Q. Wen, D. McCollum, N. Rahbar, and K. L. Billiar. Heterogeneity profoundly alters emergent stress fields in constrained multicellular systems. Biophys. J. 118:15–25, 2020.

    CAS  PubMed  Google Scholar 

  40. Gottlieb, E., S. Armour, M. Harris, and C. Thompson. Mitochondrial membrane potential regulates matrix configuration and cytochrome c release during apoptosis. Cell Death Differ. 10:709–717, 2003.

    CAS  PubMed  Google Scholar 

  41. Gourlay, C. W., and K. R. Ayscough. The actin cytoskeleton: a key regulator of apoptosis and ageing? Nat. Rev. Mol. Cell Biol. 6:583–589, 2005.

    CAS  PubMed  Google Scholar 

  42. Gourlay, C. W., and K. R. Ayscough. A role for actin in aging and apoptosis. Biochem. Soc. Trans. 33:1260–1264, 2005.

    CAS  PubMed  Google Scholar 

  43. Gourlay, C. W., L. N. Carpp, P. Timpson, S. J. Winder, and K. R. Ayscough. A role for the actin cytoskeleton in cell death and aging in yeast. J. Cell Biol. 164:803–809, 2004.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Gu, X., and K. S. Masters. Role of the Rho pathway in regulating valvular interstitial cell phenotype and nodule formation. Am. J. Physiol. Circ. Physiol. 300:H448–H458, 2011.

    CAS  Google Scholar 

  45. Guilak, F., D. M. Cohen, B. T. Estes, J. M. Gimble, W. Liedtke, and C. S. Chen. Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 5:17–26, 2009.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Gurbanov, E., and X. Shiliang. The key role of apoptosis in the pathogenesis and treatment of pulmonary hypertension. Eur. J. Cardio-thoracic Surg. 30:499–507, 2006.

    Google Scholar 

  47. Hanahan, D., and R. A. Weinberg. Hallmarks of cancer: the next generation. Cell 144:646–674, 2011.

    CAS  PubMed  Google Scholar 

  48. Hardwick, J. M. Apoptosis in viral pathogenesis. Cell Death Differ. 8:109–110, 2001.

    CAS  PubMed  Google Scholar 

  49. Hinz, B., and D. Lagares. Evasion of apoptosis by myofibroblasts: a hallmark of fibrotic diseases. Nat. Rev. Rheumatol. 16:11–31, 2020.

    CAS  PubMed  Google Scholar 

  50. Houben, F., F. C. S. Ramaekers, L. H. E. H. Snoeckx, and J. L. V. Broers. Role of nuclear lamina-cytoskeleton interactions in the maintenance of cellular strength. Biochim. Biophys. Acta Mol. Cell Res. 1773:675–686, 2007.

    CAS  Google Scholar 

  51. Huang, X., H. D. Halicka, F. Traganos, T. Tanaka, A. Kurose, and Z. Darzynkiewicz. Cytometric assessment of DNA damage in relation to cell cycle phase and apoptosis. Cell Prolif. 38:223–243, 2005.

    PubMed  PubMed Central  Google Scholar 

  52. Huang, S., and D. E. Ingber. Cell tension, matrix mechanics, and cancer development. Cancer Cell 8:175–176, 2005.

    CAS  PubMed  Google Scholar 

  53. Huang, J., Y. Liu, P. Sun, X. Lv, K. Bo, and X. Fan. Novel strategy for treatment of pulmonary arterial hypertension: enhancement of apoptosis. Lung 188:179–189, 2010.

    CAS  PubMed  Google Scholar 

  54. Hughes-Fulford, M., R. Tjandrawinata, J. Fitzgerald, K. Gasuad, and V. Gilbertson. Effects of microgravity on osteoblast growth. Gravit. Space Biol. Bull. 11:51–60, 1998.

    CAS  PubMed  Google Scholar 

  55. Humphrey, J. D., E. R. Dufresne, and M. A. Schwartz. Mechanotransduction and extracellular matrix homeostasis. Nat. Rev. Mol. Cell Biol. 15:802–812, 2014.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Igney, F. H., and P. H. Krammer. Death and anti-death: tumour resistance to apoptosis. Nat. Rev. Cancer 2:277–288, 2002.

    CAS  PubMed  Google Scholar 

  57. Infanger, M., P. Kossmehl, M. Shakibaei, J. Bauer, S. Kossmehl-Zorn, A. Cogoli, F. Curcio, A. Oksche, M. Wehland, R. Kreutz, M. Paul, and D. Grimm. Simulated weightlessness changes the cytoskeleton and extracellular matrix proteins in papillary thyroid carcinoma cells. Cell Tissue Res. 324:267–277, 2006.

    CAS  PubMed  Google Scholar 

  58. Ingber, D. E. Can cancer be reversed by engineering the tumor microenvironment? Semin. Cancer Biol. 18:356–364, 2008.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Jaalouk, D. E., and J. Lammerding. Mechanotransduction gone awry. Nat. Rev. Mol. Cell Biol. 10:63–73, 2009.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Jian, B., N. Narula, Q. Y. Li, E. R. Mohler, and R. J. Levy. Progression of aortic valve stenosis: TGF-β1 is present in calcified aortic valve cusps and promotes aortic valve interstitial cell calcification via apoptosis. Ann. Thorac. Surg. 75:457–465, 2003.

    PubMed  Google Scholar 

  61. Jordan, M. A., and L. Wilson. Microtubules and actin filaments: dynamic targets for cancer chemotherapy. Curr. Opin. Cell Biol. 10:123–130, 1998.

    CAS  PubMed  Google Scholar 

  62. Jurasz, P., D. Courtman, S. Babaie, and D. J. Stewart. Role of apoptosis in pulmonary hypertension: from experimental models to clinical trials. Pharmacol. Ther. 126:1–8, 2010.

    CAS  PubMed  Google Scholar 

  63. Kaiser, D., M.-A. Freyberg, and P. Friedl. Lack of hemodynamic forces triggers apoptosis in vascular endothelial cells. Biochem. Biophys. Res. Commun. 231:586–590, 1997.

    CAS  PubMed  Google Scholar 

  64. Kannan, K., and S. K. Jain. Oxidative stress and apoptosis. Pathophysiology 7:153–163, 2000.

    CAS  PubMed  Google Scholar 

  65. Kavallaris, M. Microtubules and resistance to tubulin-binding agents. Nat. Rev. Cancer 10:194–204, 2010.

    CAS  PubMed  Google Scholar 

  66. Kerr, J. F. R., A. H. Wyllie, and A. R. Currie. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. J. Intern. Med. 258:479–517, 1972.

    Google Scholar 

  67. Kilian, K. A., B. Bugarija, B. T. Lahn, and M. Mrksich. Geometric cues for directing the differentiation of mesenchymal stem cells. Proc. Natl. Acad. Sci. USA 107:4872–4877, 2010.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Kim, N. H., and P. M. Kang. Apoptosis in cardiovascular diseases: mechanism and clinical implications. Korean Circ. J. 40:299–305, 2010.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Kim, D. H., S. B. Khatau, Y. Feng, S. Walcott, S. X. Sun, G. D. Longmore, and D. Wirtz. Actin cap associated focal adhesions and their distinct role in cellular mechanosensing. Sci. Rep. 2:1–13, 2012.

    Google Scholar 

  70. Klein, E. A., L. Yin, D. Kothapalli, P. Castagnino, F. J. Byfield, T. Xu, I. Levental, E. Hawthorne, P. A. Janmey, and R. K. Assoian. Cell-cycle control by physiological matrix elasticity and in vivo tissue stiffening. Curr. Biol. 19:1511–1518, 2009.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Konduri, S., Y. Xing, J. N. Warnock, Z. He, and A. P. Yoganathan. Normal physiological conditions maintain the biological characteristics of porcine aortic heart valves: an ex vivo organ culture study. Ann. Biomed. Eng. 33:1158–1166, 2005.

    PubMed  Google Scholar 

  72. Kong, D., T. Zheng, M. Zhang, D. Wang, S. Du, X. Li, J. Fang, and X. Cao. Static mechanical stress induces apoptosis in rat endplate chondrocytes through MAPK and mitochondria-dependent caspase activation signaling pathways. PLoS ONE 8:1–10, 2013.

    Google Scholar 

  73. Kumar, S. Caspase function in programmed cell death. Cell Death Differ. 14:32–43, 2007.

    CAS  PubMed  Google Scholar 

  74. Kusano, H., S. Shimizu, R. C. Koya, H. Fujita, S. Kamada, N. Kuzumaki, and Y. Tsujimoto. Human gelsolin prevents apoptosis by inhibiting apoptotic mitochondrial changes via closing VDAC. Oncogene 19:4807–4814, 2000.

    CAS  PubMed  Google Scholar 

  75. Lagadic-Gossmann, D., L. Huc, and V. Lecureur. Alterations of intracellular pH homeostasis in apoptosis: origins and roles. Cell Death Differ. 11:953–961, 2004.

    CAS  PubMed  Google Scholar 

  76. Leadsham, J. E., V. N. Kotiadis, D. J. Tarrant, and C. W. Gourlay. Apoptosis and the yeast actin cytoskeleton. Cell Death Differ. 17:754–762, 2010.

    CAS  PubMed  Google Scholar 

  77. Leight, J. L., M. A. Wozniak, S. Chen, M. L. Lynch, and C. S. Chen. Matrix rigidity regulates a switch between TGF-β1-induced apoptosis and epithelial-mesenchymal transition. Mol. Biol. Cell 23:781–791, 2012.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Leopold, J. A. Cellular mechanisms of aortic valve calcification. Circ. Cardiovasc. Interv. 5:605–614, 2012.

    PubMed  PubMed Central  Google Scholar 

  79. Li, Q., A. Kumar, E. Makhija, and G. V. Shivashankar. The regulation of dynamic mechanical coupling between actin cytoskeleton and nucleus by matrix geometry. Biomaterials 35:961–969, 2014.

    CAS  PubMed  Google Scholar 

  80. Li, B., F. Li, K. M. Puskar, and J. H. C. Wang. Spatial patterning of cell proliferation and differentiation depends on mechanical stress magnitude. J. Biomech. 42:1622–1627, 2009.

    PubMed  PubMed Central  Google Scholar 

  81. Liao, X., X. Wang, Y. Gu, Q. Chen, and L. Y. Chen. Involvement of death receptor signaling in mechanical stretch-induced cardiomyocyte apoptosis. Life Sci. 77:160–174, 2005.

    CAS  PubMed  Google Scholar 

  82. Liu, X. M., D. Ensenat, H. Wang, A. I. Schafer, and W. Durante. Physiologic cyclic stretch inhibits apoptosis in vascular endothelium. FEBS Lett. 541:52–56, 2003.

    CAS  PubMed  Google Scholar 

  83. Locksley, R. M., N. Killeen, and M. J. Lenardo. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104:487–501, 2001.

    CAS  PubMed  Google Scholar 

  84. Loreto, C., G. Musumeci, A. Castorina, C. Loreto, and G. Martinez. Degenerative disc disease of herniated intervertebral discs is associated with extracellular matrix remodeling, vimentin-positive cells and cell death. Ann. Anat. 193:156–162, 2011.

    CAS  PubMed  Google Scholar 

  85. Lotem, J., and L. Sachs. Cytokines as suppressors of apoptosis. Apoptosis 4:187–196, 1999.

    CAS  PubMed  Google Scholar 

  86. Lunova, M., V. Zablotskii, N. M. Dempsey, T. Devillers, M. Jirsa, E. Sykova, S. Kubinova, O. Lunov, and A. Dejneka. Modulation of collective cell behaviour by geometrical constraints. Integr. Biol. 8:1093–1196, 2016.

    Google Scholar 

  87. Malek, A. M., S. L. Alper, and S. Izumo. Hemodynamic shear stress and its role in atherosclerosis. Jama 282:2035–2042, 1999.

    CAS  PubMed  Google Scholar 

  88. Mana-Capelli, S., M. Paramasivam, S. Dutta, and D. McCollum. Angiomotins link F-actin architecture to Hippo pathway signaling. Mol. Biol. Cell 25:1676–1685, 2014.

    PubMed  PubMed Central  Google Scholar 

  89. Mayr, M., Y. Hu, P. Hainaut, and Q. Xu. Mechanical stress-induced DNA damage and rac- p38MAPK signal pathways mediate p53-dependent apoptosis in vascular smooth muscle cells. FASEB J 16:1423–1425, 2002.

    CAS  PubMed  Google Scholar 

  90. Mayr, M., C. Li, Y. Zou, U. Huemer, Y. Hu, and Q. Xu. Biomechanical stress-induced apoptosis in vein grafts involves p38 mitogen-activated protein kinases. FASEB J 14:261–270, 2000.

    CAS  PubMed  Google Scholar 

  91. McIlwain, D. R., T. Berger, and T. W. Mak. Caspase functions in cell death and disease. Cold Spring Harb. Perspect. Biol. 7:1–28, 2015.

    Google Scholar 

  92. Mleynek, T., D. Li, J. Rosenblatt, M. J. Redd, A. Chan, and Y. Gu. Endothelia extrude apoptotic cells to maintain a constant barrier. BioRix2 2018. https://doi.org/10.1101/268946.

    Article  Google Scholar 

  93. Mohler, E. R., F. Gannon, C. Reynolds, R. Zimmerman, M. G. Keane, and F. S. Kaplan. Bone formation and inflammation in cardiac valves. Circulation 103:1522–1528, 2001.

    PubMed  Google Scholar 

  94. Morbidelli, L., M. Monici, N. Marziliano, A. Cogoli, F. Fusi, J. Waltenberger, and M. Ziche. Simulated hypogravity impairs the angiogenic response of endothelium by up-regulating apoptotic signals. Biochem. Biophys. Res. Commun. 334:491–499, 2005.

    CAS  PubMed  Google Scholar 

  95. Musumeci, G., C. Loreto, M. L. Carnazza, I. Strehin, and J. Elisseeff. OA cartilage derived chondrocytes encapsulated in poly(ethylene glycol) diacrylate (PEGDA) for the evaluation of cartilage restoration and apoptosis in an in vitro model. Histol. Histopathol. 26:1265–1278, 2011.

    CAS  PubMed  Google Scholar 

  96. Narula, J., N. Haider, R. Virmani, T. G. Disalvo, F. D. Kolodgie, R. J. Hajjar, U. Schmidt, M. J. Semigran, G. W. Dec, and B. Khaw. Apoptosis in myocytes in end-stage heart failure. N. Engl. J. Med. 335:1182–1189, 1996.

    CAS  PubMed  Google Scholar 

  97. Nelson, C. M., R. P. Jean, J. L. Tan, W. F. Liu, N. J. Sniadecki, A. A. Spector, and C. S. Chen. Emergent patterns of growth controlled by multicellular form and mechanics. Proc. Natl. Acad. Sci. USA 102:11594–11599, 2005.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Norbury, C. J., and B. Zhivotovsky. DNA damage-induced apoptosis. Oncogene 23:2797–2808, 2004.

    CAS  PubMed  Google Scholar 

  99. Odaka, C., M. L. Sanders, and P. Crews. Jasplakinolide induces apoptosis in various transformed cell lines by a caspase-3-like protease-dependent pathway. Clin. Diagn. Lab. Immunol. 7:947–952, 2000.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Ohsawa, S., J. Vaughen, and T. Igaki. Cell extrusion: a stress-responsive force for good or evil in epithelial homeostasis. Dev. Cell 44:284–296, 2018.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Ohtsu, M., N. Sakai, H. Fujita, M. Kashiwagi, S. Gasa, S. Shimizu, Y. Eguchi, Y. Tsujimoto, Y. Sakiyama, K. Kobayashi, and N. Kuzumaki. Inhibition of apoptosis by the actin-regulatory protein gelsolin. EMBO J. 16:4650–4656, 1997.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Olivetti, G., R. Abbi, and F. Quaini. Apoptosis in the failing human heart. N. Engl. J. Med. 336:1131–1141, 1997.

    CAS  PubMed  Google Scholar 

  103. Olson, E. N., and A. Nordheim. Linking actin dynamics and gene transcription to drive cellular motile functions. Nat. Rev. Mol. Cell Biol. 11:353–365, 2010.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Paoli, P., E. Giannoni, and P. Chiarugi. Anoikis molecular pathways and its role in cancer progression. Biochim. Biophys. Acta Mol. Cell Res. 3481–3498:2013, 1833.

    Google Scholar 

  105. Parlato, S., A. M. Giammarioli, M. Logozzi, F. Lozupone, P. Matarrese, F. Luciani, M. Falchi, W. Malorni, and S. Fais. CD95 (APO-1/Fas) linkage to the actin cytoskeleton through ezrin in human T lymphocytes: a novel regulatory mechanism of the CD95 apoptotic pathway. EMBO J. 19:5123–5134, 2000.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Paul, C., F. Manero, S. Gonin, C. Kretz-Remy, S. Virot, and A.-P. Arrigo. Hsp27 as a negative regulator of cytochrome c release. Mol. Cell. Biol. 22:816–834, 2002.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Peacock, A. J., N. F. Murphy, J. J. McMurray, L. Caballero, and S. Stewart. An epidemiological study of pulmonary arterial hypertension. Eur. Respir. J. 30:104–109, 2007.

    CAS  PubMed  Google Scholar 

  108. Peitsch, M. C., B. Polzar, H. Stephan, T. Crompton, H. R. MacDonald, H. G. Mannherz, and J. Tschopp. Characterization of the endogenous deoxyribonuclease involved in nuclear DNA degradation during apoptosis (programmed cell death). EMBO J. 12:371–377, 1993.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Perry, S. W., J. P. Norman, J. Barbieri, E. B. Brown, and H. A. Gelbard. Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. Biotechniques 50:98–115, 2011.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Peyronnet, R., J. M. Nerbonne, and P. Kohl. Cardiac mechano-gated ion channels and arrhythmias. Circ Res. 118:239–311, 2016.

    Google Scholar 

  111. Phrommintikul, A., L. Tran, A. Kompa, B. Wang, A. Adrahtas, D. Cantwell, D. J. Kelly, and H. Krum. Effects of a Rho kinase inhibitor on pressure overload induced cardiac hypertrophy and associated diastolic dysfunction. Am. J. Physiol. Hear. Circ. Physiol. 294:1804–1814, 2008.

    Google Scholar 

  112. Pickup, M. W., J. K. Mouw, and V. M. Weaver. The extracellular matrix modulates the hallmarks of cancer. EMBO Rep. 15:1243–1253, 2014.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Porter, A. G., and R. U. Jänicke. Emerging roles of caspase-3 in apoptosis. Cell Death Differ. 6:99–104, 1999.

    CAS  PubMed  Google Scholar 

  114. Puthalakath, H., A. Villunger, L. A. O’Reilly, J. G. Beaumont, L. Coultas, R. E. Cheney, D. C. S. Huang, and A. Strasser. Bmf: a proapoptotic BH3-only protein regulated by interaction with the myosin V actin motor complex, activated by anoikis. Science 293:1829–1832, 2001.

    CAS  PubMed  Google Scholar 

  115. Qiao, L., and G. C. Farrell. The effects of cell density, attachment substratum and dexamethasone on spontaneous apoptosis of rat hepatocytes in primary culture. Vitro. Cell. Dev. Biol. Anim. 35:417–424, 1999.

    CAS  Google Scholar 

  116. Rikitake, Y., and J. K. Liao. Rho GTPases, statins, and nitric oxide. Circ. Res. 97:1232–1235, 2005.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Rodriguez, K. J., L. M. Piechura, A. M. Porras, and K. S. Masters. Manipulation of valve composition to elucidate the role of collagen in aortic valve calcification. BMC Cardiovasc. Disord. 14:1–10, 2014.

    Google Scholar 

  118. Roos, W. P., and B. Kaina. DNA damage-induced cell death by apoptosis. Trends Mol. Med. 12:440–450, 2006.

    CAS  PubMed  Google Scholar 

  119. Rowe, V. L., S. L. Stevens, T. T. Reddick, M. B. Freeman, R. Donnell, R. C. Carroll, and M. H. Goldman. Vascular smooth muscle cell apoptosis in aneurysmal, occlusive, and normal human aortas. J. Vasc. Surg. 31:567–576, 2000.

    CAS  PubMed  Google Scholar 

  120. Roy, S., and D. W. Nicholson. Cross-talk in cell death signaling. J. Exp. Med. 192:F21–F25, 2000.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Sendoel, A., and M. O. Hengartner. Apoptotic cell death under hypoxia. Physiology 29:168–176, 2014.

    CAS  PubMed  Google Scholar 

  122. Solon, J., I. Levental, K. Sengupta, P. C. Georges, and P. A. Janmey. Fibroblast adaptation and stiffness matching to soft elastic substrates. Biophys. J. 93:4453–4461, 2007.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Song, A. S. Thermally induced apoptosis, necrosis, and heat shock protein expression in 3D culture. J. Biomech. Eng. 136:1–10, 2014.

    Google Scholar 

  124. Song, Y., J. Fu, M. Zhou, L. Xiao, X. Feng, H. Chen, and W. Huang. Activated Hippo/Yes-associated protein pathway promotes cell proliferation and anti-apoptosis in endometrial stromal cells of endometriosis. J. Clin. Endocrinol. Metab. 101:1552–1561, 2016.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Sotoudeh, M., Y.-S. Li, N. Yajima, C.-C. Chang, T.-C. Tsou, Y. Wang, S. Usami, A. Ratcliffe, S. Chien, and J. Y.-J. Shyy. Induction of apoptosis in vascular smooth muscle cells by mechanical stretch. Am. J. Physiol. Circ. Physiol. 282:H1709–H1716, 2002.

    CAS  Google Scholar 

  126. Steen, R. L., and P. Collas. Mistargeting of B-type lamins at the end of mitosis: implications on cell survival and regulation of lamins A/C expression. J. Cell Biol. 152:621–626, 2001.

    Google Scholar 

  127. Stournaras, C., E. Stiakaki, S. B. Koukouritaki, P. A. Theodoropoulos, M. Kalmanti, Y. Fostinis, and A. Gravanis. Altered actin polymerization dynamics in various malignant cell types: Evidence for differential sensitivity to cytochalasin B. Biochem. Pharmacol. 52:1339–1346, 1996.

    CAS  PubMed  Google Scholar 

  128. Streichan, S. J., C. R. Hoerner, T. Schneidt, D. Holzer, and L. Hufnagel. Spatial constraints control cell proliferation in tissues. Proc. Natl. Acad. Sci. USA 111:5586–5591, 2014.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Su, B. Y., K. M. Shontz, N. A. Flavahan, and P. T. Nowicki. The effect of phenotype on mechanical stretch-induced vascular smooth muscle cell apoptosis. J. Vasc. Res. 43:229–237, 2006.

    PubMed  Google Scholar 

  130. Suria, H., L. Chau, E. Negrou, D. Kelvin, and J. Madrenas. Cytoskeletal disruption induces T cell apoptosis by a caspase-3 mediated mechanism. Life Sci. 65:2697–2707, 1999.

    CAS  PubMed  Google Scholar 

  131. Suzanne, M., and H. Steller. Shaping organisms with apoptosis. Cell Death Differ. 20:669–675, 2013.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Tamada, M., M. P. Sheetz, and Y. Sawada. Activation of a signaling cascade by cytoskeleton stretch. Dev. Cell 7:709–718, 2004.

    CAS  PubMed  Google Scholar 

  133. Tanaka, K., M. Sata, D. Fukuda, Y. Suematsu, N. Motomura, S. Takamoto, Y. Hirata, and R. Nagai. Age-associated aortic stenosis in apolipoprotein E-deficient mice. J. Am. Coll. Cardiol. 46:134–141, 2005.

    CAS  PubMed  Google Scholar 

  134. Tang, H. L., K. L. Yuen, H. M. Tang, and M. C. Fung. Reversibility of apoptosis in cancer cells. Br. J. Cancer 100:118–122, 2009.

    CAS  PubMed  Google Scholar 

  135. Tilghman, R. W., C. R. Cowan, J. D. Mih, Y. Koryakina, D. Gioeli, J. K. Slack-Davis, B. R. Blackman, D. J. Tschumperlin, and J. T. Parsons. Matrix rigidity regulates cancer cell growth and cellular phenotype. PLoS ONE 5:1–13, 2010.

    Google Scholar 

  136. Tomasek, J. J., G. Gabbiani, B. Hinz, C. Chaponnier, and R. A. Brown. Myofibroblasts and mechanoregulation of connective tissue remodelling. Nat. Rev. Mol. Cell Biol. 3:349–363, 2002.

    CAS  PubMed  Google Scholar 

  137. Tsujimoto, Y. Cell death regulation by the Bcl-2 protein family in the mitochondria. J. Cell. Physiol. 195:158–167, 2003.

    CAS  PubMed  Google Scholar 

  138. Ulrich, T. A., E. M. de Juan Pardo, and S. Kumar. The mechanical rigidity of the extracellular matrix regulates the structure, motility, and proliferation of glioma cells. Cancer Res. 69:4167–4174, 2009.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Vidyasekar, P., P. Shyamsunder, R. Arun, R. Santhakumar, N. K. Kapadia, R. Kumar, and R. S. Verma. Genome wide expression profiling of cancer cell lines cultured in microgravity reveals significant dysregulation of cell cycle and MicroRNA gene networks. PLoS ONE 10:1–20, 2015.

    Google Scholar 

  140. Virani, S. S., et al. Heart disease and stroke statistics—2020 update. Circulation 141:139–596, 2020. https://doi.org/10.1161/cir.0000000000000757.

    Article  Google Scholar 

  141. Wada, T., and J. M. Penninger. Mitogen-activated protein kinases in apoptosis regulation. Oncogene 23:2838–2849, 2004.

    CAS  PubMed  Google Scholar 

  142. Wang, K., J. J. Brems, R. L. Gamelli, and J. Ding. Reversibility of caspase activation and its role during glycochenodeoxycholate-induced hepatocyte apoptosis. J. Biol. Chem. 280:23490–23495, 2005.

    CAS  PubMed  Google Scholar 

  143. Wang, G., W. Chen, H. Qu, and X. Li. The effect of cyclic stretch on apoptosis of human squamous carcinoma of tongue cell line Tca8113. Biomed. Eng. Inform. 2009. https://doi.org/10.1109/BMEI.2009.5303118.

    Article  Google Scholar 

  144. Wang, H.-B., M. Dembo, and Y.-L. Wang. Substrate flexibility regulates growth and apoptosis of normal but not transformed cells. Am. J. Physiol. Physiol. 279:C1345–C1350, 2000.

    CAS  Google Scholar 

  145. Wang, Y. X., B. Martin-McNulty, V. Da Cunha, J. Vincelette, X. Lu, Q. Feng, M. Halks-Miller, M. Mahmoudi, M. Schroeder, B. Subramanyam, J. L. Tseng, G. D. Deng, S. Schirm, A. Johns, K. Kauser, W. P. Dole, and D. R. Light. Fasudil, a Rho-kinase inhibitor, attenuates angiotensin II-induced abdominal aortic aneurysm in apolipoprotein E-deficient mice by inhibiting apoptosis and proteolysis. Circulation 111:2219–2226, 2005.

    CAS  PubMed  Google Scholar 

  146. Wang, P., A. J. Valentijn, A. P. Gilmore, and C. H. Streuli. Early events in the anoikis program occur in the absence of caspase activation. J. Biol. Chem. 278:19917–19925, 2003.

    CAS  PubMed  Google Scholar 

  147. Watters, D. Molecular mechanisms of ionizing radiation-induced apoptosis. Immunol. Cell Biol. 77:263–271, 1999.

    CAS  PubMed  Google Scholar 

  148. Wencker, D., M. Chandra, K. Nguyen, W. Miao, S. Garantziotis, S. M. Factor, J. Shirani, R. C. Armstrong, and R. N. Kitsis. A mechanistic role for cardiac myocyte apoptosis in heart failure. J. Clin. Invest. 111:1497–1504, 2003.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Wernig, F., M. Mayr, and Q. Xu. Mechanical stretch-induced apoptosis in smooth muscle cells is mediated by β1-integrin signaling pathways. Hypertension 41:903–911, 2003.

    CAS  PubMed  Google Scholar 

  150. Wernig, F., and Q. Xu. Mechanical stress-induced apoptosis in the cardiovascular system. Prog. Biophys. Mol. Biol. 78:105–137, 2002.

    CAS  PubMed  Google Scholar 

  151. Wu, C.-C., Y.-S. Li, J. H. Haga, R. Kaunas, J.-J. Chiu, F.-C. Su, S. Usami, and S. Chien. Directional shear flow and Rho activation prevent the endothelial cell apoptosis induced by micropatterned anisotropic geometry. Proc. Natl. Acad. Sci. USA 104:1254–1259, 2007.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Wu, Y., D. Zhao, J. Zhuang, F. Zhang, and C. Xu. Caspase-8 and caspase-9 functioned differently at different stages of the cyclic stretch-induced apoptosis in human periodontal ligament cells. PLoS ONE 11:1–15, 2016.

    Google Scholar 

  153. Yamazaki, T., I. Komuro, S. Kudoh, Y. Zou, R. Nagai, R. Aikawa, H. Uozumi, and Y. Yazaki. Role of ion channels and exchangers in mechanical stretch-induced cardiomyocyte hypertrophy. Circ. Res. 82:430–437, 1998.

    CAS  PubMed  Google Scholar 

  154. Yeung, T., P. C. Georges, L. A. Flanagan, B. Marg, M. Ortiz, M. Funaki, N. Zahir, W. Ming, V. Weaver, and P. A. Janmey. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil. Cytoskeleton 60:24–34, 2005.

    PubMed  Google Scholar 

  155. Zhang, T., F. Tian, J. Wang, J. Jing, S. S. Zhou, and Y. D. Chen. Atherosclerosis-associated endothelial cell apoptosis by MiR-429-mediated down regulation of Bcl-2. Cell. Physiol. Biochem. 37:1421–1430, 2015.

    PubMed  Google Scholar 

  156. Zhang, Y. H., C. Q. Zhao, L. S. Jiang, and L. Y. Dai. Substrate stiffness regulates apoptosis and the mRNA expression of extracellular matrix regulatory genes in the rat annular cells. Matrix Biol. 30:135–144, 2011.

    PubMed  Google Scholar 

  157. Zhao, T., X. Tang, C. S. Umeshappa, H. Ma, H. Gao, Y. Deng, A. Freywald, and J. Xiang. Simulated microgravity promotes cell apoptosis through suppressing Uev1A/TICAM/TRAF/NF-κB-regulated anti-apoptosis and p53/PCNA- and ATM/ATR-Chk1/2-controlled DNA-damage response pathways. J. Cell. Biochem. 2148:2138–2148, 2016.

    Google Scholar 

Download references

Acknowledgments

This work was funding in part by Grants from the National Science Foundation (CMMI 1761432), the American Heart Association (Grant No. 14PRE18310016) to H.A.C., and the National Science Foundation IGERT (Grant No. DGE 1144804) to Z.E.G. and H.A.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristen L. Billiar.

Additional information

Associate Editor Debra T. Auguste oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goldblatt, Z.E., Cirka, H.A. & Billiar, K.L. Mechanical Regulation of Apoptosis in the Cardiovascular System. Ann Biomed Eng 49, 75–97 (2021). https://doi.org/10.1007/s10439-020-02659-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02659-x

Keywords