Skip to main content
Log in

Sensor Anchoring Improves the Correlation Between Intramuscular Pressure and Muscle Tension in a Rabbit Model

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Intramuscular pressure (IMP) shows promise for estimating individual muscle tension in vivo. However, previous pressure measurements show high variability during isometric contraction and poor correlation with tension during dynamic contraction. We hypothesized that enhanced sensor anchoring/orientation would improve tension estimation and thus developed a novel pressure sensor with a barbed housing. Sensors were inserted into the tibialis anterior (TA) of New Zealand White rabbits (N = 8) both parallel and perpendicular to the fiber orientation. We measured muscle stress and IMP during both isometric and dynamic contractions. Passive stress showed good agreement for both insertion directions across muscle lengths (ICC > 0.8). Active stress and IMP agreement were good (ICC = 0.87 ± 0.04) for perpendicular insertions but poor (ICC = 0.21 ± 0.22) for parallel insertions across both dynamic contractions and isometric contractions within the muscle’s range of motion. These findings support use of IMP measurements to estimate muscle tension across a range of contraction conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Abbreviations

IMP:

Intramuscular pressure

COV:

Coefficient of variation

TA:

Tibialis anterior

ROM:

Range of motion

HA:

Hyaluronic acid

PCSA:

Physiological cross-sectional area

COD:

Coefficient of determination

ICC:

Intraclass correlation coefficient

References

  1. Aratow, M., R. E. Ballard, A. G. Crenshaw, J. Styf, D. E. Watenpaugh, N. J. Kahan, and A. R. Hargens. Intramuscular pressure and electromyography as indexes of force during isokinetic exercise. J. Appl. Physiol. 74(2634–2640):1993, 1985.

    Google Scholar 

  2. Ballard, R. E., D. E. Watenpaugh, G. A. Breit, G. Murthy, D. C. Holley, and A. R. Hargens. Leg intramuscular pressures during locomotion in humans. J. Appl. Physiol. 84(1976–1981):1998, 1985.

    Google Scholar 

  3. Close, R. I. Dynamic properties of mammalian skeletal muscles. Physiol. Rev. 52:129–197, 1972.

    Article  CAS  Google Scholar 

  4. Cottler, P. S., W. R. Karpen, D. A. Morrow, and K. R. Kaufman. Performance characteristics of a new generation pressure microsensor for physiologic applications. Ann. Biomed. Eng. 37:1638–1645, 2009.

    Article  Google Scholar 

  5. Crenshaw, A. G., J. R. Styf, and A. R. Hargens. Intramuscular pressures during exercise: an evaluation of a fiber optic transducer-tipped catheter system. Eur. J. Appl. Physiol. Occup. Physiol. 65:178–182, 1992.

    Article  CAS  Google Scholar 

  6. Crenshaw, A. G., J. R. Styf, S. J. Mubarak, and A. R. Hargens. A new “transducer-tipped” fiber optic catheter for measuring intramuscular pressures. J. Orthop. Res. 8:464–468, 1990.

    Article  CAS  Google Scholar 

  7. Davis, J., K. R. Kaufman, and R. L. Lieber. Correlation between active and passive isometric force and intramuscular pressure in the isolated rabbit tibialis anterior muscle. J. Biomech. 36:505–512, 2003.

    Article  Google Scholar 

  8. Davis, J., K. R. Kaufman, and R. L. Lieber. Correlation between active and passive isometric force and intramuscular pressure in the isolated rabbit tibialis anterior muscle. J. Biomech. 36:505–512, 2003.

    Article  Google Scholar 

  9. Degens, H., S. Salmons, and J. C. Jarvis. Intramuscular pressure, force and blood flow in rabbit tibialis anterior muscles during single and repetitive contractions. Eur. J. Appl. Physiol. Occup. Physiol. 78:13–19, 1998.

    Article  CAS  Google Scholar 

  10. Go S. A., E. R. Jensen, S. M. O’Connor, L. Q. Evertz, D. A. Morrow, S. R. Ward, R. L. Lieber, and K. R. Kaufman. Design considerations of a fiber optic pressure sensor protective housing for intramuscular pressure measurements. Ann. Biomed. Eng. 1–8, 2016.

  11. Harry, J. D., A. W. Ward, N. C. Heglund, D. L. Morgan, and T. A. McMahon. Cross-bridge cycling theories cannot explain high-speed lengthening behavior in frog muscle. Biophys. J. 57:201–208, 1990.

    Article  CAS  Google Scholar 

  12. Hill, A. V. The heat of shortening and the dynamic constants of muscle. Proc. R. Soc. Lond. B 126:136–195, 1938.

    Article  Google Scholar 

  13. Hug, F., K. Tucker, J. L. Gennisson, M. Tanter, and A. Nordez. Elastography for muscle biomechanics: toward the estimation of individual muscle force. Exerc. Sport Sci. Rev. 43:125–133, 2015.

    Article  Google Scholar 

  14. Jenkyn, T. R., B. Koopman, P. Huijing, R. L. Lieber, and K. R. Kaufman. Finite element model of intramuscular pressure during isometric contraction of skeletal muscle. Phys. Med. Biol. 47:4043–4061, 2002.

    Article  Google Scholar 

  15. Katz, B. The relation between force and speed in muscular contraction. J. Physiol. 96:45–64, 1939.

    Article  CAS  Google Scholar 

  16. Kaufman, K. R., T. Wavering, D. Morrow, J. Davis, and R. L. Lieber. Performance characteristics of a pressure microsensor. J. Biomech. 36:283–287, 2003.

    Article  Google Scholar 

  17. Kirkebo, A., and A. Wisnes. Regional tissue fluid pressure in rat calf muscle during sustained contraction or stretch. Acta Physiol. Scand. 114:551–556, 1982.

    Article  CAS  Google Scholar 

  18. Koo, T. K., and M. Y. Li. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 15:155–163, 2016.

    Article  Google Scholar 

  19. Lieber, R. L., and F. T. Blevins. Skeletal muscle architecture of the rabbit hindlimb: functional implications of muscle design. J. Morphol. 199:93–101, 1989.

    Article  CAS  Google Scholar 

  20. Nakhostine, M., J. R. Styf, S. van Leuven, A. R. Hargens, and D. H. Gershuni. Intramuscular pressure varies with depth. The tibialis anterior muscle studied in 12 volunteers. Acta Orthop. Scand. 64:377–381, 1993.

    Article  CAS  Google Scholar 

  21. Ozerdem, U. Measuring interstitial fluid pressure with fiberoptic pressure transducers. Microvasc. Res. 77:226–229, 2009.

    Article  Google Scholar 

  22. Rassier, D. E., and B. R. MacIntosh. Length-dependent twitch contractile characteristics of skeletal muscle. Can. J. Physiol. Pharmacol. 80:993–1000, 2002.

    Article  CAS  Google Scholar 

  23. Sacks, R. D., and R. R. Roy. Architecture of the hind limb muscles of cats: functional significance. J. Morphol. 173:185–195, 1982.

    Article  CAS  Google Scholar 

  24. Sejersted, O. M., and A. R. Hargens. Intramuscular pressures for monitoring different tasks and muscle conditions. Adv. Exp. Med. Biol. 384:339–350, 1995.

    Article  CAS  Google Scholar 

  25. Styf, J. Compartment Syndromes : Diagnosis, Treatment, and Complications. Boca Raton: CRC Press, p. 301, 2004.

    Google Scholar 

  26. Styf, J., R. Ballard, M. Aratow, A. Crenshaw, D. Watenpaugh, and A. R. Hargens. Intramuscular pressure and torque during isometric, concentric and eccentric muscular activity. Scand. J. Med. Sci. Sports 5:291–296, 1995.

    Article  CAS  Google Scholar 

  27. Styf, J. R., A. Crenshaw, and A. R. Hargens. Intramuscular pressures during exercise Comparison of measurements with and without infusion. Acta Orthop. Scand. 60:593–596, 1989.

    Article  CAS  Google Scholar 

  28. Ward, S. R., J. Davis, K. R. Kaufman, and R. L. Lieber. Relationship between muscle stress and intramuscular pressure during dynamic muscle contractions. Muscle Nerve 36:313–319, 2007.

    Article  Google Scholar 

  29. Winters, T. M., G. S. Sepulveda, P. S. Cottler, K. R. Kaufman, R. L. Lieber, and S. R. Ward. Correlation between isometric force and intramuscular pressure in rabbit tibialis anterior muscle with an intact anterior compartment. Muscle Nerve 40:79–85, 2009.

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Shannon Bremner and Mary Esparza for their technical assistance and Dr. Koichi Masuda for valuable experimental advice. We thank Elisabeth Jensen, Shanette Go, Loribeth Evertz, and FISO Corporation for their contribution to the design, development, and manufacturing of the pressure microsensor. This study was supported by National Institute of Health Grants P30AR061303, R24HD050837, R01HD031476, and the Department of Veterans Affairs grant numbers I01RX002462 and IK6 RX003351.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard L. Lieber.

Additional information

Associate Editor Jane Grande-Allen oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Connor, S.M., Kaufman, K.R., Ward, S.R. et al. Sensor Anchoring Improves the Correlation Between Intramuscular Pressure and Muscle Tension in a Rabbit Model. Ann Biomed Eng 49, 912–921 (2021). https://doi.org/10.1007/s10439-020-02633-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02633-7

Keywords

Navigation