Skip to main content
Log in

Comparison of Surgical Smoke Generated During Electrosurgery with Aerosolized Particulates from Ultrasonic and High-Speed Cutting

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

“Surgical smoke” is an airborne by-product of electrosurgery comprised of vapour and suspended particles. Although concerns exist that exposure may be harmful, there is a poor understanding of the smoke in terms of particle size, morphology, composition and biological viability. Notably, it is not known how the biological tissue source and cutting method influence the smoke. The objective of this study was to develop a collection method for airborne by-product from surgical cutting. This would enable comprehensive analyses of the particulate burden, composition and biological viability. The method was applied to compare the electrosurgical smoke generated (in the absence of any evacuation mechanism) with the aerosolized/airborne by-products generated by ultrasonic and high-speed cutting, from bone and liver tissue cutting. We report a wide range of particle sizes (0.93–806.31 μm for bone, 0.05–1040.43 μm for liver) with 50% of the particles being <2.72 μm (~PM2.5) and 90% being <10 μm (PM10). EDX and biochemical analysis reveal components of biological cells and cellular metabolic activity in particulate from liver tissue cut by electrosurgery and ultrasonic cutting. We show for the first time however that bone saws and ultrasonic cutting do not liberate viable cells from bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Al Sahaf, O. S., I. Vega-Carrascal, F. O. Cunningham, J. P. McGrath, and F. J. Bloomfield. Chemical composition of smoke produced by high-frequency electrosurgery. Ir. J. Med. Sci. 176:229–232, 2007.

    CAS  PubMed  Google Scholar 

  2. Alkatout, I., T. Schollmeyer, N. A. Hawaldar, N. Sharma, and L. Mettler. Principles and safety measures of electrosurgery in laparoscopy. JSLS 16:130–139, 2012.

    PubMed  PubMed Central  Google Scholar 

  3. Amaral, S. S., J. A. de Carvalho, M. A. M. Costa, and C. Pinheiro. An overview of particulate matter measurement instruments. Atmosphere (Basel). 6:1327–1345, 2015.

    CAS  Google Scholar 

  4. Andréasson, S. N., H. Anundi, B. Sahlberg, C.-G. Ericsson, R. Wålinder, G. Enlund, L. Påhlman, and H. Mahteme. Peritonectomy with high voltage electrocautery generates higher levels of ultrafine smoke particles. Eur. J. Surg. Oncol. 35:780–784, 2009.

    PubMed  Google Scholar 

  5. Baggish, M. S., P. Baltoyannis, and E. Sze. Protection of the rat lung from the harmful effects of laser smoke. Lasers Surg. Med. 8:248–253, 1988.

    CAS  PubMed  Google Scholar 

  6. Baggish, M. S., and M. Elbakry. The effects of laser smoke on the lungs of rats. Am. J. Obstet. Gynecol. 156:1260–1265, 1987.

    CAS  PubMed  Google Scholar 

  7. Benias, P. C., and D. L. Carr-Locke. Principles of electrosurgery. Ercp 86–92:e1, 2019. https://doi.org/10.1016/b978-0-323-48109-0.00011-0.

    Article  Google Scholar 

  8. Bonczyk, P. A., and J. J. Sangiovanni. Optical and probe measurements of soot in a burning fuel droplet stream. Combust. Sci. Technol. 36:135–147, 1984.

    CAS  Google Scholar 

  9. Brüske-Hohlfeld, I., G. Preissler, K.-W. Jauch, M. Pitz, D. Nowak, A. Peters, and H.-E. Wichmann. Surgical smoke and ultrafine particles. J. Occup. Med. Toxicol. 3:31, 2008.

    PubMed  PubMed Central  Google Scholar 

  10. Cascella, M., M. Rajnik, C. Arturo, D. S. C., and D. N. Raffaela. (2020) Features, Evaluation and Treatment Coronavirus (COVID-19). StatPearls Publishing, 2020. https://www.ncbi.nlm.nih.gov/books/NBK554776/?report=classic

  11. Cavina, E., O. Goletti, N. Molea, P. Buccianti, M. Chiarugi, G. Boni, E. Lazzeri, and R. Bianchi. Trocar site tumor recurrences. May pneumoperitoneum be responsible? Surg. Endosc. 12:1294–1296, 1998.

    CAS  PubMed  Google Scholar 

  12. ConMed. (2015) Operator’s Manual—System 5000 Electrosurgical Unit (60-8005-SYS). 2015. http://eifu.conmed.com/

  13. DesCôteaux, J.-G., P. Picard, É. C. Poulin, and M. Baril. Preliminary study of electrocautery smoke particles produced in vitro and during laparoscopic procedures. Surg. Endosc. 10:152–158, 1996.

    PubMed  Google Scholar 

  14. Dobrogowski, M., W. Wesołowski, M. Kucharska, A. Sapota, and L. S. Pomorski. Chemical composition of surgical smoke formed in the abdominal cavity during laparoscopic cholecystectomy—assessment of the risk to the patient. Int. J. Occup. Med. Environ. Health 27:314–325, 2014.

    PubMed  Google Scholar 

  15. Dolan, E. B., M. G. Haugh, D. Tallon, C. Casey, and L. M. McNamara. Heat-shock-induced cellular responses to temperature elevations occurring during orthopaedic cutting. J. R. Soc. Interface 9:3503–3513, 2012.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Dolan, E. B., M. G. Haugh, M. C. Voisin, D. Tallon, and L. M. McNamara. Thermally induced osteocyte damage initiates a remodelling signaling cascade. PLoS ONE 10:1–17, 2015.

    Google Scholar 

  17. Dolan, E. B., T. J. Vaughan, G. L. Niebur, C. Casey, D. Tallon, and L. M. McNamara. How bone tissue and cells experience elevated temperatures during orthopaedic cutting: an experimental and computational investigation. J. Biomech. Eng. 136:021019, 2014.

    PubMed  Google Scholar 

  18. Eder, C., A. Chavanne, J. Meissner, W. Bretschneider, A. Tuschel, P. Becker, and M. Ogon. Autografts for spinal fusion: osteogenic potential of laminectomy bone chips and bone shavings collected via high speed drill. Eur. Spine J. 20:1791–1795, 2011.

    PubMed  PubMed Central  Google Scholar 

  19. Edwards, B. E., and R. E. Reiman. Results of a survey on current surgical smoke control practices. AORN J. 87:739–749, 2008.

    PubMed  Google Scholar 

  20. Edwards, B. E., and R. E. Reiman. Comparison of current and past surgical smoke control practices. AORN J. 95:337–350, 2012.

    PubMed  Google Scholar 

  21. Elmashae, Y., R. H. Koehler, M. Yermakov, T. Reponen, and S. A. Grinshpun. Surgical smoke simulation study: physical characterization and respiratory protection. Aerosol Sci. Technol. 52:38–45, 2018.

    CAS  PubMed  Google Scholar 

  22. Farrugia, M., S. Y. Hussain, and D. Perrett. Particulate matter generated during monopolar and bipolar hysteroscopic human uterine tissue vaporization. J. Minim. Invasive Gynecol. 16:458–464, 2009.

    PubMed  Google Scholar 

  23. Fitzgerald, J. E. F., M. Malik, and I. Ahmed. A single-blind controlled study of electrocautery and ultrasonic scalpel smoke plumes in laparoscopic surgery. Surg. Endosc. Other Interv. Tech. 26:337–342, 2012.

    Google Scholar 

  24. Fletcher, J. N., D. Mew, and J.-G. DesCôteaux. Dissemination of melanoma cells within electrocautery plume. Am. J. Surg. 178:57–59, 1999.

    CAS  PubMed  Google Scholar 

  25. Gao, S., R. H. Koehler, M. Yermakov, and S. A. Grinshpun. Performance of facepiece respirators and surgical masks against surgical smoke: simulated workplace protection factor study. Ann. Occup. Hyg. 60:608–618, 2016.

    PubMed  PubMed Central  Google Scholar 

  26. Garden, J. M. Papillomavirus in the vapor of carbon dioxide laser-treated verrucae. JAMA J. Am. Med. Assoc. 259:1199, 1988.

    CAS  Google Scholar 

  27. Garden, J. M., M. K. O’Banion, A. D. Bakus, and C. Olson. Viral disease transmitted by laser-generated plume (aerosol). Arch. Dermatol. 138:1303–1307, 2002.

    PubMed  Google Scholar 

  28. Garden, J. M., M. K. O’Banion, L. S. Shelnitz, K. S. Pinski, A. D. Bakus, M. E. Reichmann, and J. P. Sundberg. Papillomavirus in the vapor of carbon dioxide laser-treated verrucae. JAMA 259:1199–1202, 1988.

    CAS  PubMed  Google Scholar 

  29. Gatti, J. E., C. J. Bryant, R. B. Noone, and J. B. Murphy. The mutagenicity of electrocautery smoke. Plast. Reconstr. Surg. 89:781–784, 1992; (discussion 785-6).

    CAS  PubMed  Google Scholar 

  30. Hallmo, P., and O. Naess. Laryngeal papillomatosis with human papillomavirus DNA contracted by a laser surgeon. Eur. Arch. OtorhinoLaryngol 248:425–427, 1991.

    CAS  PubMed  Google Scholar 

  31. Hensman, C., D. Baty, R. G. Willis, and A. Cuschieri. Chemical composition of smoke produced by high-frequency electrosurgery in a closed gaseous environment. Surg. Endosc. 12:1017–1019, 1998.

    CAS  PubMed  Google Scholar 

  32. In, S. M., D.-Y. Park, I. K. Sohn, C.-H. Kim, H. L. Lim, S.-A. Hong, D. Y. Jung, S.-Y. Jeong, J. H. Han, and H. J. Kim. Experimental study of the potential hazards of surgical smoke from powered instruments. Br. J. Surg. 102:1581–1586, 2015.

    CAS  PubMed  Google Scholar 

  33. Infection prevention and control during health care for probable or confirmed cases of novel coronavirus (nCoV) infection. World Health Organization, 2013. https://www.who.int/csr/disease/coronavirus_infections/IPCnCoVguidance_06May13.pdf

  34. Johnson, G. K., and W. S. Robinson. Human immunodeficiency virus-1 (HIV-1) in the vapors of surgical power instruments. J. Med. Virol. 33:47–50, 1991.

    CAS  PubMed  Google Scholar 

  35. Karjalainen, M., A. Kontunen, S. Saari, T. Rönkkö, J. Lekkala, A. Roine, and N. Oksala. The characterization of surgical smoke from various tissues and its implications for occupational safety. PLoS ONE 13:e0195274, 2018.

    PubMed  PubMed Central  Google Scholar 

  36. Kasten, F. Falling speed of aerosol particles. J. Appl. Meteorol. 7:944–947, 1968.

    Google Scholar 

  37. Katz, J. The Electrostatic Precipitator: Application and Concepts. Handb. Powder Sci. Technol. 753–770, 1997. https://doi.org/10.1007/978-1-4615-6373-0_16

  38. Khaled, U., and A. Z. Eldein. Experimental study of V-I characteristics of wire–plate electrostatic precipitators under clean air conditions. J. Electrostat. 71:228–234, 2013.

    Google Scholar 

  39. Krones, C. J., J. Conze, F. Hoelzl, M. Stumpf, U. Klinge, M. Möller, W. Dott, V. Schumpelick, and J. Hollender. Chemical composition of surgical smoke produced by electrocautery, harmonic scalpel and argon beaming—a short study. Eur. Surg. Acta Chir. Austriaca 39:118–121, 2007.

    Google Scholar 

  40. Kulkarni, P., P. A. Baron, and K. Willeke. Aerosol measurement: principles, techniques, and applications. Hoboken, NJ: Wiley, 2011.

    Google Scholar 

  41. Kuttenberger, J., E. Polska, and B. M. Schaefer. A novel three-dimensional bone chip organ culture. Clin. Oral Invest. 17:1547–1555, 2013.

    Google Scholar 

  42. Lee, S. J., and K. H. Park. Ultrasonic energy in endoscopic surgery. Yonsei Med. J. 40:545, 1999.

    CAS  PubMed  Google Scholar 

  43. Lee, T., J.-C. Soo, R. F. LeBouf, D. Burns, D. Schwegler-Berry, M. Kashon, J. Bowers, and M. Harper. Surgical smoke control with local exhaust ventilation: experimental study. J. Occup. Environ. Hyg. 15:341–350, 2018.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Loh, S. A., G. A. Carlson, E. I. Chang, E. Huang, D. Palanker, and G. C. Gurtner. Comparative healing of surgical incisions created by the peak plasmablade, conventional electrosurgery, and a scalpel. Plast. Reconstr. Surg. 124:1849–1859, 2009.

    CAS  PubMed  Google Scholar 

  45. Massarweh, N. N., N. Cosgriff, and D. P. Slakey. Electrosurgery: history, principles, and current and future uses. J. Am. Coll. Surg. 202:520–530, 2006.

    PubMed  Google Scholar 

  46. McQuail, P. M., B. S. McCartney, J. F. Baker, and P. Kenny. Diathermy awareness among surgeons—an analysis in Ireland. Ann. Med. Surg. 12:54–59, 2016.

    CAS  Google Scholar 

  47. Medical Face Masks—Requirements and Test Methods Standard (BS EN 14683:2019)

  48. Mick, P. T., and R. Murphy. Aerosol-generating otolaryngology procedures and the need for enhanced PPE during the COVID-19 pandemic: a literature review. J. Otolaryngol. Head Neck Surg. 49:1–10, 2020.

    Google Scholar 

  49. Nduka, C. C., N. Poland, M. Kennedy, J. Dye, and A. Darzi. Does the ultrasonically activated scalpel release viable airborne cancer cells? Surg. Endosc. 12:1031–1034, 1998.

    CAS  PubMed  Google Scholar 

  50. Nezhat, C., W. K. Winer, F. Nezhat, C. Nezhat, D. Forrest, and W. G. Reeves. Smoke from laser surgery: Is there a health hazard? Lasers Surg. Med. 7:376–382, 1987.

    CAS  PubMed  Google Scholar 

  51. Nikas, K. S. P., A. A. Varonos, and G. C. Bergeles. Numerical simulation of the flow and the collection mechanisms inside a laboratory scale electrostatic precipitator. J. Electrostat. 63:423–443, 2005.

    Google Scholar 

  52. Redmayne, A. C., D. Wake, R. C. Brown, and B. Crook. Measurement of the degree of protection afforded by respiratory protective equipment against microbiological aerosols. Ann. Occup. Hyg. 41:636–640, 1997.

    Google Scholar 

  53. Romano, F., J. Gustén, S. De Antonellis, and C. M. Joppolo. Electrosurgical smoke: ultrafine particle measurements and work environment quality in different operating theatres. Int. J. Environ. Res. Public Health 2017. https://doi.org/10.3390/ijerph14020137.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Roth, A. A., P. C. Tang, M. J. Ye, K. S. Mohammad, and R. F. Nelson. Improved autologous cortical bone harvest and viability with 2Flute otologic burs. Laryngoscope 128:E40–E46, 2018.

    CAS  PubMed  Google Scholar 

  55. Schulz, H., V. Harder, A. Ibald-Mulli, A. Khandoga, W. Koenig, F. Krombach, R. Radykewicz, A. Stampfl, B. Thorand, and A. Peters. Cardiovascular effects of fine and ultrafine particles. J. Aerosol Med. 18:1–22, 2005.

    CAS  PubMed  Google Scholar 

  56. Seipp, H.-M., T. Steffens, J. Weigold, A. Lahmer, A. Maier-Hasselmann, T. Herzog, and J. Herzog-Niescery. Efficiencies and noise levels of portable surgical smoke evacuation systems. J. Occup. Environ. Hyg. 0:1–20, 2018.

    Google Scholar 

  57. Sisler, J. D., J. Shaffer, J.-C. Soo, R. F. LeBouf, M. Harper, Y. Qian, and T. Lee. In vitro toxicological evaluation of surgical smoke from human tissue. J. Occup. Med. Toxicol. 13:12, 2018.

    PubMed  PubMed Central  Google Scholar 

  58. Song, C., B. Tang, P. A. Campbell, and A. Cuschieri. Thermal spread and heat absorbance differences between open and laparoscopic surgeries during energized dissections by electrosurgical instruments. Surg. Endosc. 23:2480–2487, 2009.

    CAS  PubMed  Google Scholar 

  59. Steege, A. L., J. M. Boiano, and M. H. Sweeney. Secondhand smoke in the operating room? Precautionary practices lacking for surgical smoke. Am. J. Ind. Med. 59:1020–1031, 2016.

    PubMed  PubMed Central  Google Scholar 

  60. Sutton, P. A., S. Awad, A. C. Perkins, and D. N. Lobo. Comparison of lateral thermal spread using monopolar and bipolar diathermy, the Harmonic ScalpelTM and the LigasureTM. Br. J. Surg. 97:428–433, 2010.

    CAS  PubMed  Google Scholar 

  61. The Cell: A Molecular Approach. 2nd edition. No Title. Sunderland (MA): Sinauer Associates, 2000. https://www.ncbi.nlm.nih.gov/books/NBK9839/

  62. Tomita, Y., S. Mihashi, K. Nagata, S. Ueda, M. Fujiki, M. Hirano, and T. Hirohata. Mutagenicity of smoke condensates induced by CO2-laser irradiation and electrocauterization. Mutat. Res. Toxicol. 89:145–149, 1981.

    CAS  Google Scholar 

  63. Tseng, L. N., F. J. Berends, P. Wittich, N. D. Bouvy, R. L. Marquet, G. Kazemier, and H. J. Bonjer. Port-site metastases. Impact of local tissue trauma and gas leakage. Surg. Endosc. 12:1377–1380, 1998.

    CAS  PubMed  Google Scholar 

  64. Ulmer, B. C. The hazards of surgical smoke. AORN J. 87:737–738, 2008.

    Google Scholar 

  65. Weld, K. J., S. Dryer, C. D. Ames, K. Cho, C. Hogan, M. Lee, P. Biswas, and J. Landman. Analysis of surgical smoke produced by various energy-based instruments and effect on laparoscopic visibility. J. Endourol. 21:347–351, 2007.

    PubMed  Google Scholar 

  66. Workman, A. D., D. B. Welling, B. S. Carter, W. T. Curry, E. H. Holbrook, S. T. Gray, G. A. Scangas, and B. S. Bleier. Endonasal instrumentation and aerosolization risk in the era of COVID-19: simulation, literature review, and proposed mitigation strategies. Int. Forum Allergy Rhinol. 2020. https://doi.org/10.1002/alr.22577.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Zhao, L., and K. Adamiak. Numerical simulation of the electrohydrodynamic flow in a single wire-plate electrostatic precipitator. IEEE Trans. Ind. Appl. 44:683–691, 2008.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Science Foundation Ireland (SFI) and the European Regional Development Fund (Grant Number 13/RC/2073).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laoise M. McNamara.

Additional information

Associate Editor Umberto Morbiducci oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casey, V.J., Martin, C., Curtin, P. et al. Comparison of Surgical Smoke Generated During Electrosurgery with Aerosolized Particulates from Ultrasonic and High-Speed Cutting. Ann Biomed Eng 49, 560–572 (2021). https://doi.org/10.1007/s10439-020-02587-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02587-w

Keywords