Abstract
Enzymatic crosslinking of tyrosine is a simple and modular method for adding functional peptides to silk fibroin (SF) hydrogels. Silk fibroin is a naturally derived polymer notable for its robust mechanical properties, biological compatibility, and versatility. Hydrogels fabricated from SF are elastic, optically clear, and have tunable moduli, however, they do not contain native biological epitopes for cell interactions. In this work we demonstrate the attachment of peptides to SF hydrogels through crosslinking of tyrosine with horseradish peroxidase (HRP) and hydrogen peroxide (H2O2). The goal was to understand the utility of this approach and to study how the addition of peptides affects the SF material properties. SF hydrogels conjugated to model peptides with different molecular weights and hydrophobic properties were studied by liquid chromatography/tandem mass spectroscopy (LC–MS/MS) (bond formation), fluorescent imaging (spatial distribution), Fourier transform infrared spectroscopy (FTIR) (protein secondary structure), and rheology (gelation time, modulus). As a proof of concept using a biologically relevant peptide, a peptide containing the cell binding domain Arg-Gly-Asp (RGD) was conjugated to SF, and the density and morphology of primary human fibroblasts were assessed. This work demonstrates a facile method for adding peptides to silk fibroin that can be adopted for a variety of biomaterials applications.







Similar content being viewed by others
References
Applegate, M. B., B. P. Partlow, J. Coburn, B. Marelli, C. Pirie, R. Pineda, D. L. Kaplan, and F. G. Omenetto. Photocrosslinking of silk fibroin using riboflavin for ocular prostheses. Adv. Mater. 2016. https://doi.org/10.1002/adma.201504527.
Asakura, T., K. Okushita, and M. P. Williamson. Analysis of the structure of Bombyx mori silk fibroin by NMR. Macromolecules 48:2345–2357, 2015.
Asakura, T., K. Suita, T. Kameda, S. Afonin, and A. S. Ulrich. Structural role of tyrosine in Bombyx mori silk fibroin, studied by solid-state NMR and molecular mechanics on a model peptide prepared as silk I and II. Magn. Reson. Chem. 42:258–266, 2004.
Asakura, T., Y. Suzuki, Y. Nakazawa, K. Yazawa, G. P. Holland, and J. L. Yarger. Silk structure studied with nuclear magnetic resonance. Prog. Nucl. Magn. Reson. Spectrosc. 69:23–68, 2013.
Chelli, B., M. Barbalinardo, F. Valle, P. Greco, E. Bystrenova, M. Bianchi, and F. Biscarini. Neural cell alignment by patterning gradients of the extracellular matrix protein laminin. Interface Focus 4:20130041, 2014.
DeForest, C. A., and K. S. Anseth. Cytocompatible click-based hydrogels with dynamically tunable properties through orthogonal photoconjugation and photocleavage reactions. Nat. Chem. 3:925–931, 2011.
Dinjaski, N., and D. L. Kaplan. Recombinant protein blends: silk beyond natural design. Curr. Opin. Biotechnol. 39:1–7, 2016.
Gil, E. S., J. A. Kluge, D. N. Rockwood, R. Rajkhowa, L. Wang, X. Wang, and D. L. Kaplan. Mechanical improvements to reinforced porous silk scaffolds. J. Biomed. Mater. Res. A 99A:16–28, 2011.
Guarnieri, D., A. De Capua, M. Ventre, A. Borzacchiello, C. Pedone, D. Marasco, M. Ruvo, and P. A. Netti. Covalently immobilized RGD gradient on PEG hydrogel scaffold influences cell migration parameters. Acta Biomater. 6:2532–2539, 2010.
Hersel, U., C. Dahmen, and H. Kessler. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 24:4385–4415, 2003.
Hu, X., D. L. Kaplan, and P. Cebe. Determining beta-sheet crystallinity in fibrous proteins by thermal analysis and infrared spectroscopy. Macromolecules 39:6161–6170, 2006.
Jin, H.-J., J. Park, V. Karageorgiou, U.-J. Kim, R. Valluzzi, P. Cebe, and D. L. Kaplan. Water-stable silk films with reduced beta-sheet content. Adv. Funct. Mater. 15:1241–1247, 2005.
Jun, I., K. M. Park, D. Y. Lee, K. D. Park, and H. Shin. Control of adhesion, focal adhesion assembly, and differentiation of myoblasts by enzymatically crosslinked cell-interactive hydrogels. Macromol. Res. 19:911–920, 2011.
Kim, U.-J., J. Park, C. Li, H.-J. Jin, R. Valluzzi, and D. L. Kaplan. Structure and properties of silk hydrogels. Biomacromolecules 5:786–792, 2004.
Kinahan, M. E., E. Filippidi, S. Köster, X. Hu, H. M. Evans, T. Pfohl, D. L. Kaplan, and J. Y. Wong. Tunable silk: using microfluidics to fabricate silk fibers with controllable properties. Biomacromolecules 12:1504–1511, 2011.
Kundu, J., Y. Chung, Y. Ha, G. Tae, and S. C. Kundu. Silk fibroin nanoparticles for cellular uptake and control release. Int. J. Pharm. 388:242–250, 2010.
Leisk, G. G., T. J. Lo, T. Yucel, Q. Lu, and D. L. Kaplan. Electrogelation for protein adhesives. Adv. Mater. 22:711–715, 2010.
Lu, Q., H. Zhu, C. Zhang, F. Zhang, B. Zhang, and D. L. Kaplan. Silk self-assembly mechanisms and control from thermodynamics to kinetics. Biomacromolecules 13:826–832, 2012.
Mann, B. K., A. S. Gobin, A. T. Tsai, R. H. Schmedlen, and J. L. West. Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM analogs for tissue engineering. Biomaterials 22:3045–3051, 2001.
Marelli, B., M. A. Brenckle, D. L. Kaplan, and F. G. Omenetto. Silk fibroin as edible coating for perishable food preservation. Sci. Rep. 2016. https://doi.org/10.1038/srep25263.
McGill, M., J. M. Coburn, B. P. Partlow, X. Mu, and D. L. Kaplan. Molecular and macro-scale analysis of enzyme-crosslinked silk hydrogels for rational biomaterial design. Acta Biomater. 63:76–84, 2017.
Murphy, A. R., P. S. John, and D. L. Kaplan. Modification of silk fibroin using diazonium coupling chemistry and the effects on hMSC proliferation and differentiation. Biomaterials 29:2829–2838, 2008.
Partlow, B. P., M. Bagheri, J. L. Harden, and D. L. Kaplan. Tyrosine templating in the self-assembly and crystallization of silk fibroin. Biomacromolecules 17:3570–3579, 2016.
Partlow, B. P., C. W. Hanna, J. Rnjak-Kovacina, J. E. Moreau, M. B. Applegate, K. A. Burke, B. Marelli, A. N. Mitropoulos, F. G. Omenetto, and D. L. Kaplan. Highly tunable elastomeric silk biomaterials. Adv. Funct. Mater. 24:4615–4624, 2014.
Raia, N. R., B. P. Partlow, M. McGill, E. P. Kimmerling, C. E. Ghezzi, and D. L. Kaplan. Enzymatically crosslinked silk-hyaluronic acid hydrogels. Biomaterials 131:58–67, 2017.
Rockwood, D. N., R. C. Preda, T. Yücel, X. Wang, M. L. Lovett, and D. L. Kaplan. Materials fabrication from Bombyx mori silk fibroin. Nat. Protoc. 6:1612–1631, 2011.
Sood, D., K. Chwalek, E. Stuntz, D. Pouli, C. Du, M. D. Tang-Schomer, I. Georgakoudi, L. D. Black, and D. L. Kaplan. Fetal brain extracellular matrix boosts neuronal network formation in 3D bioengineered model of cortical brain tissue. ACS Biomater. Sci. Eng. 2:131–140, 2016.
Stoppel, W. L., A. E. Gao, A. M. Greaney, B. P. Partlow, R. C. Bretherton, D. L. Kaplan, and L. D. Black. Elastic, silk-cardiac extracellular matrix hydrogels exhibit time-dependent stiffening that modulates cardiac fibroblast response. J. Biomed. Mater. Res. A 104:3058–3072, 2016.
Suzuki, Y., T. Yamazaki, A. Aoki, H. Shindo, and T. Asakura. NMR study of the structures of repeated sequences, GAGXGA (X = S, Y, V), in bombyx mori liquid silk. Biomacromolecules 15:104–112, 2014.
Vepari, C., and D. L. Kaplan. Silk as a biomaterial. Prog. Polym. Sci. 32:991–1007, 2007.
Wang, X., J. A. Kluge, G. G. Leisk, and D. L. Kaplan. Sonication-induced gelation of silk fibroin for cell encapsulation. Biomaterials 29:1054–1064, 2008.
Zhang, Y., W. Shen, R. Xiang, L. Zhuge, W. Gao, and W. Wang. Formation of silk fibroin nanoparticles in water-miscible organic solvent and their characterization. J. Nanopart. Res. 9:885–900, 2007.
Zhou, C., F. Confalonieri, M. Jacquet, R. Perasso, Z. Li, and J. Janin. Silk fibroin: structural implications of a remarkable amino acid sequence. Proteins Struct. Funct. Genet. 44:119–122, 2001.
Acknowledgments
This work was supported by the Air Force Office of Scientific Research under Grant No. FA9550-17-1-0333, and the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1325256 and the NIH (P41EB027062). We thank Jim Harden, U. Ottawa for helpful suggestions and discussion and Jon Grasman for helping to plan the in vitro experiments.
Author information
Authors and Affiliations
Corresponding author
Additional information
Associate Editor Erin Lavik oversaw the review of this article.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
McGill, M., Grant, J.M. & Kaplan, D.L. Enzyme-Mediated Conjugation of Peptides to Silk Fibroin for Facile Hydrogel Functionalization. Ann Biomed Eng 48, 1905–1915 (2020). https://doi.org/10.1007/s10439-020-02503-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10439-020-02503-2