Skip to main content
Log in

Enzyme-Mediated Conjugation of Peptides to Silk Fibroin for Facile Hydrogel Functionalization

  • Biomaterials - Engineering Cell Behavior
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Enzymatic crosslinking of tyrosine is a simple and modular method for adding functional peptides to silk fibroin (SF) hydrogels. Silk fibroin is a naturally derived polymer notable for its robust mechanical properties, biological compatibility, and versatility. Hydrogels fabricated from SF are elastic, optically clear, and have tunable moduli, however, they do not contain native biological epitopes for cell interactions. In this work we demonstrate the attachment of peptides to SF hydrogels through crosslinking of tyrosine with horseradish peroxidase (HRP) and hydrogen peroxide (H2O2). The goal was to understand the utility of this approach and to study how the addition of peptides affects the SF material properties. SF hydrogels conjugated to model peptides with different molecular weights and hydrophobic properties were studied by liquid chromatography/tandem mass spectroscopy (LC–MS/MS) (bond formation), fluorescent imaging (spatial distribution), Fourier transform infrared spectroscopy (FTIR) (protein secondary structure), and rheology (gelation time, modulus). As a proof of concept using a biologically relevant peptide, a peptide containing the cell binding domain Arg-Gly-Asp (RGD) was conjugated to SF, and the density and morphology of primary human fibroblasts were assessed. This work demonstrates a facile method for adding peptides to silk fibroin that can be adopted for a variety of biomaterials applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Applegate, M. B., B. P. Partlow, J. Coburn, B. Marelli, C. Pirie, R. Pineda, D. L. Kaplan, and F. G. Omenetto. Photocrosslinking of silk fibroin using riboflavin for ocular prostheses. Adv. Mater. 2016. https://doi.org/10.1002/adma.201504527.

    Article  PubMed  Google Scholar 

  2. Asakura, T., K. Okushita, and M. P. Williamson. Analysis of the structure of Bombyx mori silk fibroin by NMR. Macromolecules 48:2345–2357, 2015.

    Article  CAS  Google Scholar 

  3. Asakura, T., K. Suita, T. Kameda, S. Afonin, and A. S. Ulrich. Structural role of tyrosine in Bombyx mori silk fibroin, studied by solid-state NMR and molecular mechanics on a model peptide prepared as silk I and II. Magn. Reson. Chem. 42:258–266, 2004.

    Article  CAS  Google Scholar 

  4. Asakura, T., Y. Suzuki, Y. Nakazawa, K. Yazawa, G. P. Holland, and J. L. Yarger. Silk structure studied with nuclear magnetic resonance. Prog. Nucl. Magn. Reson. Spectrosc. 69:23–68, 2013.

    Article  CAS  Google Scholar 

  5. Chelli, B., M. Barbalinardo, F. Valle, P. Greco, E. Bystrenova, M. Bianchi, and F. Biscarini. Neural cell alignment by patterning gradients of the extracellular matrix protein laminin. Interface Focus 4:20130041, 2014.

    Article  Google Scholar 

  6. DeForest, C. A., and K. S. Anseth. Cytocompatible click-based hydrogels with dynamically tunable properties through orthogonal photoconjugation and photocleavage reactions. Nat. Chem. 3:925–931, 2011.

    Article  CAS  Google Scholar 

  7. Dinjaski, N., and D. L. Kaplan. Recombinant protein blends: silk beyond natural design. Curr. Opin. Biotechnol. 39:1–7, 2016.

    Article  CAS  Google Scholar 

  8. Gil, E. S., J. A. Kluge, D. N. Rockwood, R. Rajkhowa, L. Wang, X. Wang, and D. L. Kaplan. Mechanical improvements to reinforced porous silk scaffolds. J. Biomed. Mater. Res. A 99A:16–28, 2011.

    Article  CAS  Google Scholar 

  9. Guarnieri, D., A. De Capua, M. Ventre, A. Borzacchiello, C. Pedone, D. Marasco, M. Ruvo, and P. A. Netti. Covalently immobilized RGD gradient on PEG hydrogel scaffold influences cell migration parameters. Acta Biomater. 6:2532–2539, 2010.

    Article  CAS  Google Scholar 

  10. Hersel, U., C. Dahmen, and H. Kessler. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 24:4385–4415, 2003.

    Article  CAS  Google Scholar 

  11. Hu, X., D. L. Kaplan, and P. Cebe. Determining beta-sheet crystallinity in fibrous proteins by thermal analysis and infrared spectroscopy. Macromolecules 39:6161–6170, 2006.

    Article  CAS  Google Scholar 

  12. Jin, H.-J., J. Park, V. Karageorgiou, U.-J. Kim, R. Valluzzi, P. Cebe, and D. L. Kaplan. Water-stable silk films with reduced beta-sheet content. Adv. Funct. Mater. 15:1241–1247, 2005.

    Article  CAS  Google Scholar 

  13. Jun, I., K. M. Park, D. Y. Lee, K. D. Park, and H. Shin. Control of adhesion, focal adhesion assembly, and differentiation of myoblasts by enzymatically crosslinked cell-interactive hydrogels. Macromol. Res. 19:911–920, 2011.

    Article  CAS  Google Scholar 

  14. Kim, U.-J., J. Park, C. Li, H.-J. Jin, R. Valluzzi, and D. L. Kaplan. Structure and properties of silk hydrogels. Biomacromolecules 5:786–792, 2004.

    Article  CAS  Google Scholar 

  15. Kinahan, M. E., E. Filippidi, S. Köster, X. Hu, H. M. Evans, T. Pfohl, D. L. Kaplan, and J. Y. Wong. Tunable silk: using microfluidics to fabricate silk fibers with controllable properties. Biomacromolecules 12:1504–1511, 2011.

    Article  CAS  Google Scholar 

  16. Kundu, J., Y. Chung, Y. Ha, G. Tae, and S. C. Kundu. Silk fibroin nanoparticles for cellular uptake and control release. Int. J. Pharm. 388:242–250, 2010.

    Article  CAS  Google Scholar 

  17. Leisk, G. G., T. J. Lo, T. Yucel, Q. Lu, and D. L. Kaplan. Electrogelation for protein adhesives. Adv. Mater. 22:711–715, 2010.

    Article  CAS  Google Scholar 

  18. Lu, Q., H. Zhu, C. Zhang, F. Zhang, B. Zhang, and D. L. Kaplan. Silk self-assembly mechanisms and control from thermodynamics to kinetics. Biomacromolecules 13:826–832, 2012.

    Article  CAS  Google Scholar 

  19. Mann, B. K., A. S. Gobin, A. T. Tsai, R. H. Schmedlen, and J. L. West. Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM analogs for tissue engineering. Biomaterials 22:3045–3051, 2001.

    Article  CAS  Google Scholar 

  20. Marelli, B., M. A. Brenckle, D. L. Kaplan, and F. G. Omenetto. Silk fibroin as edible coating for perishable food preservation. Sci. Rep. 2016. https://doi.org/10.1038/srep25263.

    Article  PubMed  PubMed Central  Google Scholar 

  21. McGill, M., J. M. Coburn, B. P. Partlow, X. Mu, and D. L. Kaplan. Molecular and macro-scale analysis of enzyme-crosslinked silk hydrogels for rational biomaterial design. Acta Biomater. 63:76–84, 2017.

    Article  CAS  Google Scholar 

  22. Murphy, A. R., P. S. John, and D. L. Kaplan. Modification of silk fibroin using diazonium coupling chemistry and the effects on hMSC proliferation and differentiation. Biomaterials 29:2829–2838, 2008.

    Article  CAS  Google Scholar 

  23. Partlow, B. P., M. Bagheri, J. L. Harden, and D. L. Kaplan. Tyrosine templating in the self-assembly and crystallization of silk fibroin. Biomacromolecules 17:3570–3579, 2016.

    Article  CAS  Google Scholar 

  24. Partlow, B. P., C. W. Hanna, J. Rnjak-Kovacina, J. E. Moreau, M. B. Applegate, K. A. Burke, B. Marelli, A. N. Mitropoulos, F. G. Omenetto, and D. L. Kaplan. Highly tunable elastomeric silk biomaterials. Adv. Funct. Mater. 24:4615–4624, 2014.

    Article  CAS  Google Scholar 

  25. Raia, N. R., B. P. Partlow, M. McGill, E. P. Kimmerling, C. E. Ghezzi, and D. L. Kaplan. Enzymatically crosslinked silk-hyaluronic acid hydrogels. Biomaterials 131:58–67, 2017.

    Article  CAS  Google Scholar 

  26. Rockwood, D. N., R. C. Preda, T. Yücel, X. Wang, M. L. Lovett, and D. L. Kaplan. Materials fabrication from Bombyx mori silk fibroin. Nat. Protoc. 6:1612–1631, 2011.

    Article  CAS  Google Scholar 

  27. Sood, D., K. Chwalek, E. Stuntz, D. Pouli, C. Du, M. D. Tang-Schomer, I. Georgakoudi, L. D. Black, and D. L. Kaplan. Fetal brain extracellular matrix boosts neuronal network formation in 3D bioengineered model of cortical brain tissue. ACS Biomater. Sci. Eng. 2:131–140, 2016.

    Article  CAS  Google Scholar 

  28. Stoppel, W. L., A. E. Gao, A. M. Greaney, B. P. Partlow, R. C. Bretherton, D. L. Kaplan, and L. D. Black. Elastic, silk-cardiac extracellular matrix hydrogels exhibit time-dependent stiffening that modulates cardiac fibroblast response. J. Biomed. Mater. Res. A 104:3058–3072, 2016.

    Article  CAS  Google Scholar 

  29. Suzuki, Y., T. Yamazaki, A. Aoki, H. Shindo, and T. Asakura. NMR study of the structures of repeated sequences, GAGXGA (X = S, Y, V), in bombyx mori liquid silk. Biomacromolecules 15:104–112, 2014.

    Article  CAS  Google Scholar 

  30. Vepari, C., and D. L. Kaplan. Silk as a biomaterial. Prog. Polym. Sci. 32:991–1007, 2007.

    Article  CAS  Google Scholar 

  31. Wang, X., J. A. Kluge, G. G. Leisk, and D. L. Kaplan. Sonication-induced gelation of silk fibroin for cell encapsulation. Biomaterials 29:1054–1064, 2008.

    Article  CAS  Google Scholar 

  32. Zhang, Y., W. Shen, R. Xiang, L. Zhuge, W. Gao, and W. Wang. Formation of silk fibroin nanoparticles in water-miscible organic solvent and their characterization. J. Nanopart. Res. 9:885–900, 2007.

    Article  CAS  Google Scholar 

  33. Zhou, C., F. Confalonieri, M. Jacquet, R. Perasso, Z. Li, and J. Janin. Silk fibroin: structural implications of a remarkable amino acid sequence. Proteins Struct. Funct. Genet. 44:119–122, 2001.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Air Force Office of Scientific Research under Grant No. FA9550-17-1-0333, and the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1325256 and the NIH (P41EB027062). We thank Jim Harden, U. Ottawa for helpful suggestions and discussion and Jon Grasman for helping to plan the in vitro experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Kaplan.

Additional information

Associate Editor Erin Lavik oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 517 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McGill, M., Grant, J.M. & Kaplan, D.L. Enzyme-Mediated Conjugation of Peptides to Silk Fibroin for Facile Hydrogel Functionalization. Ann Biomed Eng 48, 1905–1915 (2020). https://doi.org/10.1007/s10439-020-02503-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02503-2

Keywords