Skip to main content
Log in

Modeling Heat Transfer in Tumors: A Review of Thermal Therapies

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

It is quite challenging to describe heat transfer phenomena in living systems because of the involved phenomena complexity. Indeed, thermal conduction and convection in tissues, blood perfusion, heat generation due to metabolism, complex vascular structure, changing of tissue properties depending on various conditions, are some of the features that make hard to obtain an accurate knowledge of heat transfer in living systems for all the clinical situations. This theme has a key role to predict accurately the temperature distribution in tissues, especially during biomedical applications, such as hyperthermia treatment of cancer, in which tumoral cells have to be destroyed and at the same time the surrounding healthy tissue has to be preserved. Moreover, the lack of experimentation in this field, due to ethical reasons, makes bioheat models even more significant. The first simple bioheat model was developed in 1948 by Pennes (J Appl Physiol 1:93–122, 1948) but it has some shortcomings that make the equation not so accurate. For this reason, over the years it has been modified and more complex models have been developed. The purpose of this review is to give a clear overview of how the bioheat models have been modified when applied in various hyperthermia treatments of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Abbreviations

a :

Specific surface area between blood and tissue (m−1)

a c :

Antenna constant (m−1)

A :

Maximum power density (W m−3)

A tm :

Area of the tumor (m2)

c v :

Nanoparticle concentration in the blood flow (kg L−1)

C :

Specific heat (J kg−1 K)

E :

Modulus of the electric field (V m−1)

f :

Frequency (Hz)

\(f_{\text{T}} \left( {c_{\text{v}} } \right)\) :

Source term caused by alternating magnetic field (W m−3)

G :

Incident radiation (W m−2)

g, F :

Functions depending on the radiative heat transfer (W m−3)

h :

Heat transfer coefficient (W m−2 K−1)

H :

Magnetic field (T)

I :

Scattered diffuse intensity (W m−2)

I ac :

Local acoustic intensity (W m−2)

j 0 :

Current density (A m−2)

k :

Thermal conductivity (W m−1 K−1)

L :

Specific thermal effects of chemical conversions (m2 s−2)

L LFp :

Lymphatic permeability (m Pa−1 s−1)

n :

Refractive index (–)

n inj :

Total number of injection points (–)

n np :

Number of nanoparticles (–)

P :

Transmitted antenna power (W)

q :

Heat flux (W m−2)

Q :

Power density (W m−3)

R mil :

Radius of magnetic loop (m)

r :

Radial coordinate (m)

r 0 :

Electrode radius (m)

r dist :

Tissue/outer surface relative distance (m)

\(\bar{r}\) :

Distance covered by the heat generated by nanoparticles (m)

r inj :

Radial distance of the injection (m)

r np :

Mean radius of nanoparticles (m)

S :

Antenna constant (m−1)

SAR :

Specific absorption rate (W kg−1)

t :

Time (s)

T :

Temperature (K)

u :

Velocity (m s−1)

u, w :

Velocity components (m s−1)

u q(t):

Step function (–)

W :

Tissue water density (kg m−3)

:

Far away from heating focus

a:

Arterial

b:

Blood

cr:

Critical

ch:

Channel conversion

dis:

Dispersion

e:

Effective

E:

Energy to vaporize water

Ext:

External

Fat:

Referred to fat

Laser:

Referred to laser energy

max:

Maximum

met:

Metabolism

muscle:

Referred to muscle

np:

Nanoparticles

p:

Probe

r:

Radiative

ref:

Reference

t:

Tissue

tm:

Tumor

v:

Venous

α :

Absorption coefficient (Np Hz−1 m−1)

α diff :

Effective thermal diffusivity (m2 s−1)

δ Λ :

Parameter that refers to the microvascular network (–)

γ :

Water latent heat constant (J kg−1)

Φ:

Phase function (–)

Γ:

Coordinates index (–)

Γf :

Euler gamma function (–)

ε :

Porosity (–)

θ :

Nanoparticles concentration (–)

χ :

Imaginary part of susceptibility of the magnetic nanoparticles (–)

ρ :

Density (kg m−3)

P :

Arithmetic average of each segment contained into the tumor (m)

Ψ :

Density of nanoparticles on the vascular walls (L m−2)

σ s :

Stefan–Boltzmann constant (W m−2 K−4)

σ :

Electric conductivity (S m−1)

τ :

Relaxation time (s)

τ q :

Phase-lag of the heat flux (s)

τ T :

Phase-lag of temperature gradient (s)

μ cr :

Critical cosine of an angle (–)

μ 0 :

Dielectric vacuum permeability (H m−1)

ω :

Blood perfusion (s−1)

ω tr :

Nanoshell transport albedo (–)

ω b0 :

Constant blood perfusion (s−1)

Ω :

Solid angle (–)

Ω(t):

tissue injury degree (–)

References

  1. Au, J. L., S. H. Jang, J. Zheng, C. T. Chen, S. Song, L. Hu, and M. G. Wientjes. Determinants of drug delivery and transport in solid tumors. J. Control Release 74:31–46, 2001.

    Article  CAS  PubMed  Google Scholar 

  2. Berjano, E. J. Theoretical modeling for radiofrequency ablation: state-of-the-art and challenges for the future. Biomed. Eng. Online 18:5–24, 2006.

    Google Scholar 

  3. Bermeo Varon, L. A., H. R. Barreto Orlande, and G. E. Eliçabe. Estimation of state variables in the hyperthermia therapy of cancer with heating imposed by radiofrequency electromagnetic waves. Int. J. Therm. Sci. 98:228–236, 2015.

    Article  Google Scholar 

  4. Bermeo Varon, L. A., H. R. Barreto Orlande, and G. E. Eliçabe. Combined parameter and state estimation in the radio frequency hyperthermia treatment of cancer. Numer. Heat Transf. A 70:581–594, 2016.

    Article  Google Scholar 

  5. Cavagnaro, M., R. Pinto, and V. Lopresto. Numerical models to evaluate the temperature increase induced by ex vivo microwave thermal ablation. Phys. Med. Biol. 60:3287–3311, 2015.

    Article  CAS  PubMed  Google Scholar 

  6. Chen, M. M., and K. R. Holmes. Microvascular contributions in tissue heat transfer. Ann. N. Y. Acad. Sci. 335:137–142, 1980.

    Article  CAS  PubMed  Google Scholar 

  7. Dombrovsky, L. A., V. Timchenko, and M. Jackson. Indirect heating strategy for laser induced hyperthermia: an advanced thermal model. Int. J. Heat Mass Transf. 55:4688–4700, 2012.

    Article  CAS  Google Scholar 

  8. Dombrovsky, L. A., V. Timchenko, M. Jackson, and G. H. Yeoh. A combined transient thermal model for laser hyperthermia of tumors with embedded gold nanoshells. Int. J. Heat Mass Transf. 54:5459–5469, 2011.

    Article  CAS  Google Scholar 

  9. Emami, B., and C. W. Song. Physiological mechanisms in hyperthermia: a review. Int. J. Radiat. Oncol. Biol. Phys. 10:289–295, 1984.

    Article  CAS  PubMed  Google Scholar 

  10. Furusawa, H., K. Namba, S. Thomsen, F. Akiyama, A. Bendet, C. Tanaka, Y. Yasuda, and H. Nakahara. Magnetic resonance-guided focused ultrasound surgery of breast cancer: reliability and effectiveness. J. Am. Coll. Surg. 203:54–63, 2006.

    Article  PubMed  Google Scholar 

  11. Guerrero López, G. D., M. F. J. Cepeda Rubio, J. I. Hernández Jácquez, A. Vera Hernandez, L. Lejia Salas, F. Valdes Perezgasga, and F. FloresGarcia. Computational fem model, phantom and ex vivo swine breast validation of an optimized double-slot microcoaxial antenna designed for minimally invasive breast tumor ablation: theoretical and experimental comparison of temperature, size of lesion, and swr, preliminary data. Comput. Math. Methods Med. 1:1–11, 2017.

    Article  Google Scholar 

  12. Gupta, P. K., J. Singh, and K. N. Rai. A numerical study on heat transfer in tissues during hyperthermia. Math. Comput. Model. 57:1018–1037, 2013.

    Article  Google Scholar 

  13. Gupta, P. K., J. Singh, K. N. Rai, and S. K. Rai. Solution of the heat transfer problem in tissues during hyperthermia by finite difference–decomposition method. Appl. Math. Comput. 219:6882–6892, 2013.

    Google Scholar 

  14. Herman, T. S., and B. A. Teicher. Summary of studies adding systemic chemotherapy to local hyperthermia and radiation. Int. J. Hyperther. 10:443–449, 1994.

    Article  CAS  Google Scholar 

  15. Issels, R. D., L. H. Lindner, J. Verweij, P. Wust, P. Reichardt, B. C. Schem, S. Abdel-Rahman, S. Daugaard, C. Salat, C. M. Wendtner, Z. Vujaskovic, R. Wessalowski, K. W. Jauch, H. R. Dürr, F. Ploner, A. Baur-Melnyk, U. Mansmann, W. Hiddemann, J. Y. Blay, P. Hohenberger, and European Organisation for Research and Treatment of Cancer Soft Tissue and Bone Sarcoma Group/EORTC-STBSG) and the European Society for Hyperthermic Oncology (ESHO). Neo-adjuvant chemotherapy alone or with regional hyperthermia for localised high-risk soft tissue sarcoma: a randomised phase 3 multicentre study. Lancet Oncol. 11:561–570, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jaunich, M., S. Raje, K. Kim, K. Mitra, and Z. Guo. Bio-heat transfer analysis during short pulse laser irradiation of tissues. Int. J. Heat Mass Transf. 51:5511–5521, 2008.

    Article  Google Scholar 

  17. Jones, E. L., J. R. Oleson, L. R. Prosnitz, T. V. Samulski, Z. Vujaskovic, D. Yu, L. L. Sanders, and M. W. Dewhirst. A randomized trial of hyperthermia and radiation for superficial tumors. J. Clin. Oncol. 23:3079–3085, 2005.

    Article  PubMed  Google Scholar 

  18. Keangin, P., and P. Rattanadecho. Analysis of heat transport on local thermal non-equilibrium in porous liver during microwave ablation. Int. J. Heat Mass Transf. 67:46–60, 2013.

    Article  Google Scholar 

  19. Keangin, P., and P. Rattanadecho. Numerical study of heat transfer and blood flow in two-layered porous liver tissue during microwave ablation process using single and double slot antenna. Int. J. Heat Mass Transf. 58:457–470, 2013.

    Article  Google Scholar 

  20. Keangin, P., P. Rattanadecho, and T. Wessapan. An analysis of heat transfer in liver tissue during microwave ablation using single and double slot antenna. Int. Commun. Heat Mass Transf. 38:757–766, 2011.

    Article  Google Scholar 

  21. Keangin, P., T. Wessapan, and P. Rattanadecho. Analysis of heat transfer in deformed liver cancer modeling treated using a microwave coaxial antenna. Appl. Therm. Eng. 31:3243–3252, 2011.

    Article  Google Scholar 

  22. Khaled, A. R. A., and K. Vafai. The role of porous media in modeling flow and heat transfer in biological tissues. Int. J. Heat Mass Transf. 46:4989–5003, 2003.

    Article  Google Scholar 

  23. Khanafer, K., J. L. Bull, I. Pop, and R. Berguer. Influence of pulsatile blood flow and heating scheme on the temperature distribution during hyperthermia treatment. Int. J. Heat Mass Transf. 50:4883–4890, 2007.

    Article  Google Scholar 

  24. Khanafer, K., and K. Vafai. The role of porous media in biomedical engineering as related to magnetic resonance imaging and drug delivery. Int. J. Heat Mass Transf. 42:939–953, 2006.

    Article  CAS  Google Scholar 

  25. Klinger, H. G. Heat transfer in perfused biological tissue I: general theory. Bull. Math. Biol. 36:403–415, 1974.

    CAS  PubMed  Google Scholar 

  26. Kumar, D. K., and K. N. Rai. Numerical simulation of time fractional dual-phase-lag model of heat transfer within skin tissue during thermal therapy. J. Therm. Biol. 67:49–58, 2017.

    Article  PubMed  Google Scholar 

  27. Lee, D. Y., and K. Vafai. Analytical characterization and conceptual assessment of solid and fluid temperature differentials in porous media. Int. J. Heat Mass Transf. 42:423–435, 1999.

    Article  CAS  Google Scholar 

  28. Leong, K. C., C. Yang, and S. M. S. Murshed. A model for the thermal conductivity of nanofluids—the effect of interfacial layer. J. Nanopart. Res. 8:245–254, 2006.

    Article  CAS  Google Scholar 

  29. Liu, K. C., and H. T. Chen. Analysis for the dual-phase-lag bio-heat transfer during magnetic hyperthermia treatment. Int. J. Heat Mass Transf. 52:1185–1192, 2009.

    Article  CAS  Google Scholar 

  30. Lopez Molina, J. A., M. J. Rivera, and E. Berjano. Analytical model based on a cylindrical geometry to study RF ablation with needle-like internally cooled electrode. Math. Probl. Eng. 2012. https://doi.org/10.1155/2012/834807.

    Article  Google Scholar 

  31. Lopez Molina, J. A., M. J. Rivera, and E. Berjano. Analytical transient-time solution for temperature in non perfused tissue during radiofrequency ablation. Appl. Math. Model. 42:618–635, 2017.

    Article  Google Scholar 

  32. Mahjoob, S., and K. Vafai. Analytical characterization of heat transport through biological media incorporating hyperthermia treatment. Int. J. Heat Mass Transf. 52:1608–1618, 2009.

    Article  CAS  Google Scholar 

  33. Mahjoob, S., and K. Vafai. Analysis of bioheat transport through a dual layer biological media. ASME J Heat Transf. 132:031101–031114, 2010.

    Article  Google Scholar 

  34. Mahjoob, S., and K. Vafai. Analysis of heat transfer in consecutive variable cross-sectional domains: applications in biological media and thermal management. ASME J Heat Transf. 133:011006-1–011006-9, 2011.

    Article  Google Scholar 

  35. Majchrzak, E., G. Dziatkiewicz, and M. Paruch. The modelling of heating a tissue subjected to external electromagnetic field. Acta Bioeng. Biomech. 10:29–37, 2008.

    PubMed  Google Scholar 

  36. Minchinton, A. I., and I. F. Tannock. Drug penetration in solid tumors. Nat. Rev. Cancer. 6:583–592, 2006.

    Article  CAS  PubMed  Google Scholar 

  37. Moros, E. G., and W. R. Hendee. Physics of Thermal Therapy: Fundamentals and Clinical Applications. Boca Raton: CRC Press, Taylor & Francis Group, 2012.

    Google Scholar 

  38. Nabil, M., P. Decuzzi, and P. Zunino. Modelling mass and heat transfer in nano-based cancer hyperthermia. R. Soc. Open Sci. 2:150447, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nabil, M., and P. Zunino. A computational study of cancer hyperthermia based on vascular magnetic nanoconstructs. R. Soc. Open Sci. 3:160287, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Nakayama, A., and F. Kuwahara. A general bioheat transfer model based on the theory of porous media. Int. J. Heat Mass Transf. 51:3190–3199, 2008.

    Article  CAS  Google Scholar 

  41. Ortega Palacios, R., C. J. Trujillo Romero, and M. F. J. Cepeda Rubio. A feasibility of using a novel 2.45 GHz double short distance slot coaxial antenna for minimally invasive cancer breast microwave ablation therapy: computational model, phantom, and in vivo swine experimentation. J. Healthc. Eng. 2018. https://doi.org/10.1155/2018/5806753.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Peek, M. C., M. Ahmed, A. Napoli, S. Usiskin, R. Baker, and M. Douek. Minimally invasive ablative techniques in the treatment ofbreast cancer: a systematic review and meta-analysis. Int. J. Hyperther. 33:1–12, 2016.

    Google Scholar 

  43. Pennes, H. H. Analysis of tissue and arterial blood flow temperatures in the resting forearm. J. Appl. Physiol. 1:93–122, 1948.

    Article  CAS  PubMed  Google Scholar 

  44. Primeau, A. J., A. Rendon, D. Hedley, L. Lilge, and I. F. Tannock. The distribution of the anticancer drug doxorubicin in relation to blood vessels in solid tumors. Clin. Cancer Res. 11:8782–8788, 2005.

    Article  CAS  PubMed  Google Scholar 

  45. Reis, R. F., F. Dos SantosLoureiro, and M. Lobosco. 3D numerical simulations on GPUs of hyperthermia with nanoparticles by a nonlinear bioheat model. J. Comput. Appl. Math. 295:35–47, 2016.

    Article  Google Scholar 

  46. Roetzel, W., and Y. Xuan. Bioheat equation of the human thermal system. Chem. Eng. Technol. 20:268–276, 1997.

    Article  Google Scholar 

  47. Shao, Y. L., B. Arjun, H. L. Leo, and K. J. Chua. Nano-assisted radiofrequency ablation of clinically extracted irregularly-shaped liver tumours. J. Therm. Biol. 66:101–113, 2017.

    Article  CAS  PubMed  Google Scholar 

  48. Sheu, T. W. H., M. A. Solovchuk, A. W. J. Chen, and M. Thiriet. On an acoustics–thermal–fluid coupling model for the prediction of temperature elevation in liver tumor. Int. J. Heat Mass Transf. 54:4117–4126, 2011.

    Article  Google Scholar 

  49. Tzou, D. Y. A unified field approach for heat conduction from macro- to micro-scales. J. Heat Transf. 117:8–16, 1995.

    Article  Google Scholar 

  50. Tzou, D. Y. Experimental support for the lagging behaviour in heat propagation. J. Thermophys. Heat Transf. 9:686–693, 1995.

    Article  CAS  Google Scholar 

  51. Vafai, K. Handbook of porous media (3rd ed.). Boca Raton: CRC Press, Taylor & Francis Group, 2015.

    Book  Google Scholar 

  52. Van der Zee, J. Heating the patient: a promising approach? Ann. Oncol. 13:1173–1184, 2002.

    Article  PubMed  Google Scholar 

  53. Vyas, D. C. M., S. Kumar, and A. Srivastava. Porous media based bio-heat transfer analysis on counter-current artery vein tissue phantoms: applications in photo thermal therapy. Int. J. Heat Mass Transf. 99:122–140, 2016.

    Article  Google Scholar 

  54. Wang, K., F. Tavakkoli, S. Wang, and K. Vafai. Analysis and analytical characterization of bioheat transfer during radiofrequency ablation. J. Biomech. 48:930–940, 2015.

    Article  PubMed  Google Scholar 

  55. Weinbaum, S., and L. Jiji. A new simplified bioheat equation for the effect of blood flow on local average tissue temperature. J. Biomech. Eng. 107:131–141, 1985.

    Article  CAS  PubMed  Google Scholar 

  56. Weinbaum, S., L. Jiji, and D. E. Lemons. Theory and experiment for the effect of vascular microstructure on surface tissue heat transfer—part I: anatomical foundation and model conceptualization. J. Biomech. Eng. 106:321–330, 1984.

    Article  CAS  PubMed  Google Scholar 

  57. Weinbaum, S., L. Jiji, and D. E. Lemons. Theory and experiment for the effect of vascular microstructure on surface tissue heat transfer—part II: model formulation and solution. J. Biomech. Eng. 106:331–341, 1984.

    Article  PubMed  Google Scholar 

  58. Wulff, W. The energy conservation equation for living tissue. IEEE Trans. Biomed. Eng. 21:494–497, 1974.

    Article  Google Scholar 

  59. Yang, D., M. Converse, and J. G. Webster. Expanding the bioheat equation to include tissue internal water evaporation during heating. IEEE Transact. Biomed. Eng. 54:1382–1388, 2007.

    Article  Google Scholar 

  60. Yuan, P. Numerical analysis of temperature and thermal dose response of biological tissues to thermal non-equilibrium during hyperthermia therapy. Med. Eng. Phys. 30:35–43, 2008.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Tucci.

Additional information

Associate Editor Estefanía Peña oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreozzi, A., Brunese, L., Iasiello, M. et al. Modeling Heat Transfer in Tumors: A Review of Thermal Therapies. Ann Biomed Eng 47, 676–693 (2019). https://doi.org/10.1007/s10439-018-02177-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-018-02177-x

Keywords

Navigation