Skip to main content

Advertisement

Log in

Cue-Signal-Response Analysis in 3D Chondrocyte Scaffolds with Anabolic Stimuli

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

A Correction to this article was published on 06 May 2019

This article has been updated

Abstract

Articular cartilage is an avascular connective tissue responsible for bearing loads. Cell signaling plays a central role in cartilage homeostasis and tissue engineering by directing chondrocytes to synthesize/degrade the extracellular matrix or promote inflammatory responses. The aim of this paper was to investigate anabolic, catabolic and inflammatory pathways of well-known and underreported anabolic stimuli in 3D chondrocyte cultures and connect them to diverse cartilage responses including matrix regeneration and cell communication. A cue-signal-response experiment was performed in chondrocytes embedded in alginate scaffolds subjected to a 9-day treatment with 7 anabolic cues. At the signaling level diverse pathways were measured whereas at the response level glycosaminoglycan (GAG) synthesis and cytokine releases were monitored. A significant increase of GAG was observed for each stimulus and well known anabolic phosphoproteins were activated. In addition, WNK1, an underreported protein of chondrocyte signaling, was uncovered. At the extracellular level, inflammatory and regulating cytokines were measured and DEFB1 and CXCL10 were identified as novel contributors to chondrocyte responses, both closely linked to TLR signaling and inflammation. Finally, two new pro-growth factors with an inflammatory potential, Cadherin-11 and MGP were observed. Interestingly, well-known anabolic stimuli yielded inflammatory responses which pinpoints to the pleiotropic roles of individual stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Change history

  • 06 May 2019

    This erratum is to add the following paragraph in the Acknowledgement section:

  • 06 May 2019

    This erratum is to add the following paragraph in the Acknowledgement section:

References

  1. Alexopoulos, L. G., J. Saez-Rodriguez, and C. W. Espelin. High throughput protein-based technologies and computational models for drug development, efficacy and toxicity. Drug Efficacy, Safety, and Biologics Dis-covery: Emerging Technologies and Tools: Wiley, pp. 29–52, 2009.

    Google Scholar 

  2. Aupperle, K. R., B. L. Bennett, D. L. Boyle, P.-P. Tak, A. M. Manning, and G. S. Firestein. Nf-κb regulation by iκb kinase in primary fibroblast-like synoviocytes. J. Immunol. 163(1):427–433, 1999.

    CAS  PubMed  Google Scholar 

  3. Barabas, N., J. Röhrl, E. Holler, and T. Hehlgans. Beta-defensins activate macrophages and synergize in pro-inflammatory cytokine expression induced by tlr ligands. Immunobiology 218(7):1005–1011, 2013.

    Article  CAS  PubMed  Google Scholar 

  4. Beachley, V. Z., M. T. Wolf, K. Sadtler, S. S. Manda, H. Jacobs, M. Blatchley, J. S. Bader, A. Pandey, D. Pardoll, and J. H. Elisseeff. Tissue matrix arrays for high throughput screening and systems analysis of cell function. Nat. Methods 12(12):1197, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Buckwalter, J., and H. Mankin. Articular cartilage: tissue design and chondrocyte-matrix interactions. Instr. Course Lect. 47:477–486, 1997.

    Google Scholar 

  6. Calamia, V., L. Lourido, P. Fernández-Puente, J. Mateos, B. Rocha, E. Montell, J. Vergés, C. Ruiz-Romero, and F. J. Blanco. Secretome analysis of chondroitin sulfate-treated chondrocytes reveals anti-angiogenic, anti-inflammatory and anti-catabolic properties. Arthr. Res. Ther. 14(5):R202, 2012.

    Article  CAS  Google Scholar 

  7. Chakraborti, S., M. Mandal, S. Das, A. Mandal, and T. Chakraborti. Regulation of matrix metalloproteinases: an overview. Mol. Cell. Biochem. 253(1–2):269–285, 2003.

    Article  CAS  PubMed  Google Scholar 

  8. Chapman, J. R., O. Katsara, R. Ruoff, D. Morgenstern, S. Nayak, C. Basilico, B. Ueberheide, and V. Kolupaeva. Phosphoproteomics of fibroblast growth factor 1 (fgf1) signaling in chondrocytes: identifying the signature of inhibitory response. Mol. Cell. Proteom. 16(6):1126–1137, 2017.

    Article  CAS  Google Scholar 

  9. Danišovic, L., I. Varga, and Š. Polák. Growth factors and chondrogenic differentiation of mesenchymal stem cells. Tissue Cell 44(2):69–73, 2012.

    Article  PubMed  Google Scholar 

  10. Ding, X., Y. Zhang, Y. Huang, S. Liu, H. Lu, and T. Sun. Cadherin-11 involves in synovitis and increases the migratory and invasive capacity of fibroblast-like synoviocytes of osteoarthritis. Int. Immunopharmacol. 26(1):153–161, 2015.

    Article  CAS  PubMed  Google Scholar 

  11. Enobakhare, B. O., D. L. Bader, and D. A. Lee. Quantification of sulfated glycosaminoglycans in chondrocyte/alginate cultures, by use of 1, 9-dimethylmethylene blue. Anal. Biochem. 243(1):189–191, 1996.

    Article  CAS  PubMed  Google Scholar 

  12. Goldring, M. B. Osteoarthritis and cartilage: the role of cytokines. Curr. Rheumatol. Rep. 2(6):459–465, 2000.

    Article  CAS  PubMed  Google Scholar 

  13. Gómez, R., A. Villalvilla, R. Largo, O. Gualillo, and G. Herrero-Beaumont. Tlr4 signalling in osteoarthritis [mdash] finding targets for candidate dmoads. Nat. Rev. Rheumatol. 11(3):159–170, 2015.

    Article  PubMed  Google Scholar 

  14. Haglund, L., S. M. Bernier, P. Önnerfjord, and A. D. Recklies. Proteomic analysis of the lps-induced stress response in rat chondrocytes reveals induction of innate immune response components in articular cartilage. Matrix Biol. 27(2):107–118, 2008.

    Article  CAS  PubMed  Google Scholar 

  15. Hashimoto, S., T. Nishiyama, S. Hayashi, T. Fujishiro, K. Takebe, N. Kanzaki, R. Kuroda, and M. Kurosaka. Role of p53 in human chondrocyte apoptosis in response to shear strain. Arthr. Rheum. 60(8):2340–2349, 2009.

    Article  CAS  Google Scholar 

  16. Hsueh, M.-F., P. Önnerfjord, and V. B. Kraus. Biomarkers and proteomic analysis of osteoarthritis. Matrix Biol. 39:56–66, 2014.

    Article  CAS  PubMed  Google Scholar 

  17. Janes, K. A., J. R. Kelly, S. Gaudet, J. G. Albeck, P. K. Sorger, and D. A. Lauffenburger. Cue-signal-response analysis of tnf-induced apoptosis by partial least squares regression of dynamic multivariate data. J. Comput. Biol. 11(4):544–561, 2004.

    Article  CAS  PubMed  Google Scholar 

  18. Johnson, C. I., D. J. Argyle, and D. N. Clements. In vitro models for the study of osteoarthritis. Vet. J. 209:40–49, 2016.

    Article  PubMed  Google Scholar 

  19. Lindsley, H. B., D. D. Smith, C. B. Cohick, A. E. Koch, and L. S. Davis. Proinflammatory cytokines enhance human synoviocyte expression of functional intercellular adhesion molecule-1 (icam-1). Clin. Immunol. Immunopathol. 68(3):311–320, 1993.

    Article  CAS  PubMed  Google Scholar 

  20. Long, F., E. Schipani, H. Asahara, H. Kronenberg, and M. Montminy. The creb family of activators is required for endochondral bone development. Development 128(4):541–550, 2001.

    CAS  PubMed  Google Scholar 

  21. Mannell, H., and F. Krotz. Shp-2 regulates growth factor dependent vascular signalling and function. Mini Rev. Med. Chem. 14(6):471–483, 2014.

    Article  CAS  PubMed  Google Scholar 

  22. Mariani, E., L. Pulsatelli, and A. Facchini. Signaling pathways in cartilage repair. Int. J. Mol. Sci. 15(5):8667–8698, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. McCormick, J. A., and D. H. Ellison. The wnks: atypical protein kinases with pleiotropic actions. Physiol. Rev. 91(1):177–219, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Melas, I. N., A. D. Chairakaki, E. I. Chatzopoulou, D. E. Messinis, T. Katopodi, V. Pliaka, S. Samara, A. Mitsos, Z. Dailiana, P. Kollia, et al. Modeling of signaling pathways in chondrocytes based on phosphoproteomic and cytokine release data. Osteoarthr. Cartil. 22(3):509–518, 2014.

    Article  CAS  PubMed  Google Scholar 

  25. Misra, D., S. L. Booth, M. D. Crosier, J. M. Ordovas, D. T. Felson, and T. Neogi. Matrix gla protein polymorphism, but not concentrations, is associated with radiographic hand osteoarthritis. J. Rheumatol. 38(9):1960–1965, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Na, K., S. Kim, D. G. Woo, B. K. Sun, H. N. Yang, H.-M. Chung, and K.-H. Park. Combination material delivery of dexamethasone and growth factor in hydrogel blended with hyaluronic acid constructs for neocartilage formation. Biomed. Mater. Res. Part A 83(3):779–786, 2007.

    Article  Google Scholar 

  27. Polacek, M., J.-A. Bruun, O. Johansen, and I. Martinez. Comparative analyses of the secretome from dedifferentiated and redifferentiated adult articular chondrocytes. Cartilage 2(2):186–196, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Proost, P., A.-K. Vynckier, F. Mahieu, W. Put, B. Grillet, S. Struyf, A. Wuyts, G. Opdenakker, and J. V. Damme. Microbial toll-like receptor ligands differentially regulate cxcl10/ip-10 expression in fibroblasts and mononuclear leukocytes in synergy with ifn-γ and provide a mechanism for enhanced synovial chemokine levels in septic arthritis. Eur. J. Immunol. 33(11):3146–3153, 2003.

    Article  CAS  PubMed  Google Scholar 

  29. Saez-Rodriguez, J., L. G. Alexopoulos, J. Epperlein, R. Samaga, D. A. Lauffenburger, S. Klamt, and P. K. Sorger. Discrete logic modelling as a means to link protein signalling networks with functional analysis of mammalian signal transduction. Mol. Syst. Biol. 5(1):331, 2009.

    PubMed  PubMed Central  Google Scholar 

  30. Scarf, S. Use of bone morphogenetic proteins in mesenchymal stem cell stimulation of cartilage and bone repair. World J. Stem Cells 8(1):1, 2016.

    Article  Google Scholar 

  31. Sillat, T., G. Barreto, P. Clarijs, A. Soininen, M. Ainola, J. Pajarinen, M. Korhonen, Y. T. Konttinen, R. Sakalyte, M. Hukkanen, et al. Toll-like receptors in human chondrocytes and osteoarthritic cartilage. Acta Orthop. 84(6):585–592, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Stanton, L.-A., T. M. Underhill, and F. Beier. Map kinases in chondrocyte differentiation. Dev. Biol. 263(2):165–175, 2003.

    Article  CAS  PubMed  Google Scholar 

  33. Tigli, R. S., and M. Gümüsderelioglu. Evaluation of rgd-or egf-immobilized chitosan scaffolds for chondrogenic activity. Int. J. Biol. Macromol. 43(2):121–128, 2008.

    Article  CAS  PubMed  Google Scholar 

  34. Veilleux, N., and M. Spector. Effects of fgf-2 and igf-1 on adult canine articular chondrocytes in type ii collagen–glycosaminoglycan scaffolds in vitro. Osteoarthr. Cartil. 13(4):278–286, 2005.

    Article  CAS  PubMed  Google Scholar 

  35. Verzijl, N., J. DeGroot, S. R. Thorpe, R. A. Bank, J. N. Shaw, T. J. Lyons, J. W. Bijlsma, F. P. Lafeber, J. W. Baynes, and J. M. TeKoppele. Effect of collagen turnover on the accumulation of advanced glycation end products. J. Biol. Chem. 275(50):39027–39031, 2000.

    Article  CAS  PubMed  Google Scholar 

  36. Wuyts, V., N. H. Roosens, S. Bertrand, K. Marchal, and S. C. De Keersmaecker. Guidelines for optimisation of a multiplex oligonucleotide ligation-pcr for characterisation of microbial pathogens in a microsphere suspension array. BioMed research international, 2015.

    Google Scholar 

Download references

Conflict of interest

None of the authors have any financial interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonidas G. Alexopoulos.

Additional information

Associate Editor Michael S. Detamore oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 856 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neidlin, M., Korcari, A., Macheras, G. et al. Cue-Signal-Response Analysis in 3D Chondrocyte Scaffolds with Anabolic Stimuli. Ann Biomed Eng 46, 345–353 (2018). https://doi.org/10.1007/s10439-017-1964-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-017-1964-8

Keywords

Navigation