Skip to main content
Log in

Low-Intensity Ultrasound Modulates Ca2+ Dynamics in Human Mesenchymal Stem Cells via Connexin 43 Hemichannel

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In recent years, ultrasound has gained attention in new biological applications due to its ability to induce specific biological responses at the cellular level. Although the biophysical mechanisms underlying the interaction between ultrasound and cells are not fully understood, many agree on a pivotal role of Ca2+ signaling through mechanotransduction pathways. Because Ca2+ regulates a vast range of downstream cellular processes, a better understanding of how ultrasound influences Ca2+ signaling could lead to new applications for ultrasound. In this study, we investigated the mechanism of ultrasound-induced Ca2+ mobilization in human mesenchymal stem cells using 47 MHz focused ultrasound to stimulate single cells at low intensities (~ 110 mW/cm2). We found that ultrasound exposure triggers opening of connexin 43 hemichannels on the plasma membrane, causing release of ATP into the extracellular space. That ATP then binds to G-protein-coupled P2Y1 purinergic receptors on the membrane, in turn activating phospholipase C, which evokes production of inositol trisphosphate and release of Ca2+ from intracellular stores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Alvarenga, E. C., R. Rodrigues, A. Caricati-Neto, F. C. Silva-Filho, E. J. Paredes-Gamero, and A. T. Ferreira. Low-intensity pulsed ultrasound-dependent osteoblast proliferation occurs by via activation of the P2Y receptor: role of the P2Y1 receptor. Bone 46:355–362, 2010.

    Article  CAS  PubMed  Google Scholar 

  2. Arcuino, G., J. H. Lin, T. Takano, C. Liu, L. Jiang, Q. Gao, J. Kang, and M. Nedergaard. Intercellular calcium signaling mediated by point-source burst release of ATP. Proc. Natl Acad. Sci. USA 99:9840–9845, 2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bao, L., F. Sachs, and G. Dahl. Connexins are mechanosensitive. Amer. J. Physiol. Cell Physiol. 287:C1389–C1395, 2004.

    Article  CAS  Google Scholar 

  4. Batra, N., S. Burra, A. J. Siller-Jackson, S. Gu, X. Xia, G. F. Weber, D. DeSimone, L. F. Bonewald, E. M. Lafer, E. Sprague, M. A. Schwartz, and J. X. Jiang. Mechanical stress-activated integrin α5β1 induces opening of connexin 43 hemichannels. Proc. Natl Acad. Sci. 109:3359–3364, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Berridge, M. J. The AM and FM of calcium signalling. Nature 386:759–760, 1997.

    Article  CAS  PubMed  Google Scholar 

  6. Berridge, M. J. Cell signalling. A tale of two messengers. Nature 365:388–389, 1993.

    Article  CAS  PubMed  Google Scholar 

  7. Berridge, M. J. Dysregulation of neural calcium signaling in Alzheimer disease, bipolar disorder and schizophrenia. Prion 7:2–13, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Delaine-Smith, R. M., and G. C. Reilly. Mesenchymal stem cell responses to mechanical stimuli. Muscles Ligaments Tendons J 2:169–180, 2012.

    PubMed  PubMed Central  Google Scholar 

  9. Etienne-Manneville, S., J. B. Manneville, P. Adamson, B. Wilbourn, J. Greenwood, and P. O. Couraud. ICAM-1-coupled cytoskeletal rearrangements and transendothelial lymphocyte migration involve intracellular calcium signaling in brain endothelial cell lines. J Immunol 165:3375–3383, 2000.

    Article  CAS  PubMed  Google Scholar 

  10. Fan J., Z. H. Lee, W. C. Ng, W. L. Khoa, S. H. Teoh, T. H. Soong, Y. R. Qin, Z. Y. Zhang and X. P. Li. Effect of pulse magnetic field stimulation on calcium channel current. Fifth Moscow international symposium on magnetism 324: 3491–3494, 2012

  11. Fan, Z., R. E. Kumon, J. Park, and C. X. Deng. Intracellular delivery and calcium transients generated in sonoporation facilitated by microbubbles. J Control Release 142:31–39, 2010.

    Article  CAS  PubMed  Google Scholar 

  12. Garcia, M., and M. M. Knight. Cyclic loading opens hemichannels to release ATP as part of a chondrocyte mechanotransduction pathway. J Orthop Res 28:510–515, 2010.

    CAS  PubMed  Google Scholar 

  13. Ghosh, A., and M. E. Greenberg. Calcium signaling in neurons: molecular mechanisms and cellular consequences. Science 268:239–247, 1995.

    Article  CAS  PubMed  Google Scholar 

  14. Goñi, G. M., C. Epifano, J. Boskovic, M. Camacho-Artacho, J. Zhou, A. Bronowska, M. T. Martín, M. J. Eck, L. Kremer, F. Gräter, F. L. Gervasio, M. Perez-Moreno, and D. Lietha. Phosphatidylinositol 4,5-bisphosphate triggers activation of focal adhesion kinase by inducing clustering and conformational changes. Proc. Natl Acad. Sci. 111:E3177–E3186, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Huang, J., Z. Ye, X. Hu, L. Lu, and Z. Luo. Electrical stimulation induces calcium-dependent release of NGF from cultured Schwann cells. Glia 58:622–631, 2010.

    PubMed  Google Scholar 

  16. Hwang, J. Y., N. S. Lee, C. Lee, K. H. Lam, H. H. Kim, J. Woo, M. Y. Lin, K. Kisler, H. Choi, Q. Zhou, R. H. Chow, and K. K. Shung. Investigating contactless high frequency ultrasound microbeam stimulation for determination of invasion potential of breast cancer cells. Biotechnol Bioeng 110:2697–2705, 2013.

    Article  CAS  PubMed  Google Scholar 

  17. Hwang, J. Y., H. G. Lim, C. W. Yoon, K. H. Lam, S. Yoon, C. Lee, C. T. Chiu, B. J. Kang, H. H. Kim, and K. K. Shung. Non-contact high-frequency ultrasound microbeam stimulation for studying mechanotransduction in human umbilical vein endothelial cells. Ultrasound Med Biol 40:2172–2182, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Izquierdo-Serra, M., D. Trauner, A. Llobet, and P. Gorostiza. Optical modulation of neurotransmission using calcium photocurrents through the ion channel LiGluR. Front Mol Neurosci 6:3, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jiang, J. X., A. J. Siller-Jackson, and S. Burra. Roles of gap junctions and hemichannels in bone cell functions and in signal transmission of mechanical stress. Front. Biosci. J. Virtual Libr. 12:1450–1462, 2007.

    Article  CAS  Google Scholar 

  20. Kang, K. S., J. M. Hong, J. A. Kang, J. W. Rhie, and D. W. Cho. Osteogenic differentiation of human adipose-derived stem cells can be accelerated by controlling the frequency of continuous ultrasound. J. Ultrasound Med. 32:1461–1470, 2013.

    Article  PubMed  Google Scholar 

  21. Kim, T. J., C. Joo, J. Seong, R. Vafabakhsh, E. L. Botvinick, M. W. Berns, A. E. Palmer, N. Wang, T. Ha, E. Jakobsson, J. Sun, and Y. Wang. Distinct mechanisms regulating mechanical force-induced Ca2+ signals at the plasma membrane and the ER in human MSCs. Elife 4:e04876, 2015.

    PubMed  PubMed Central  Google Scholar 

  22. Kim, T. J., J. Sun, S. Lu, Y. X. Qi, and Y. Wang. Prolonged mechanical stretch initiates intracellular calcium oscillations in human mesenchymal stem cells. PLoS ONE 9:e109378, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kimmel, E. Cavitation bioeffects. Crit. Rev. Biomed. Eng. 34:105–161, 2006.

    Article  PubMed  Google Scholar 

  24. Krasovitski, B., V. Frenkel, S. Shoham, and E. Kimmel. Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects. Proc. Natl Acad. Sci. USA 108:3258–3263, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kumon, R. E., M. Aehle, D. Sabens, P. Parikh, Y. W. Han, D. Kourennyi, and C. X. Deng. Spatiotemporal effects of sonoporation measured by real-time calcium imaging. Ultrasound Med. Biol. 35:494–506, 2009.

    Article  CAS  PubMed  Google Scholar 

  26. Kusuyama, J., K. Bandow, M. Shamoto, K. Kakimoto, T. Ohnishi, and T. Matsuguchi. Low intensity pulsed ultrasound (LIPUS) influences the multilineage differentiation of mesenchymal stem and progenitor cell lines through ROCK-Cot/Tpl2-MEK-ERK signaling pathway. J. Biol. Chem. 289:10330–10344, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lam, K. H., H. S. Hsu, Y. Li, C. Lee, A. Lin, Q. Zhou, E. S. Kim, and K. K. Shung. Ultrahigh frequency lensless ultrasonic transducers for acoustic tweezers application. Biotechnol. Bioeng. 110:881–886, 2013.

    Article  CAS  PubMed  Google Scholar 

  28. Lee, H. J., B. H. Choi, B. H. Min, Y. S. Son, and S. R. Park. Low-intensity ultrasound stimulation enhances chondrogenic differentiation in alginate culture of mesenchymal stem cells. Artif. Org. 30:707–715, 2006.

    Article  CAS  Google Scholar 

  29. Leybaert, L., and M. J. Sanderson. Intercellular Ca(2+) waves: mechanisms and function. Physiological Reviews 92:1359–1392, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu, Y. S., Y. A. Liu, C. J. Huang, M. H. Yen, C. T. Tseng, S. Chien, and O. K. Lee. Mechanosensitive TRPM7 mediates shear stress and modulates osteogenic differentiation of mesenchymal stromal cells through Osterix pathway. Sci. Rep. 5:16522, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Missiaen, L., W. Robberecht, L. van den Bosch, G. Callewaert, J. B. Parys, F. Wuytack, L. Raeymaekers, B. Nilius, J. Eggermont, and H. De Smedt. Abnormal intracellular Ca(2+)homeostasis and disease. Cell Calcium 28:1–21, 2000.

    Article  CAS  PubMed  Google Scholar 

  32. Morgado-Valle, C., L. Verdugo-Díaz, D. E. García, C. Morales-Orozco, and R. Drucker-Colín. The role of voltage-gated Ca2+ channels in neurite growth of cultured chromaffin cells induced by extremely low frequency (ELF) magnetic field stimulation. Cell Tissue Res. 291:217–230, 1998.

    Article  CAS  PubMed  Google Scholar 

  33. Nelson, T. R., J. B. Fowlkes, J. S. Abramowicz, and C. C. Church. Ultrasound biosafety considerations for the practicing sonographer and sonologist. J. Ultrasound Med. 28:139–150, 2009.

    Article  PubMed  Google Scholar 

  34. Orr, A. W., B. P. Helmke, B. R. Blackman, and M. A. Schwartz. Mechanisms of mechanotransduction. Dev. Cell 10:11–20, 2006.

    Article  CAS  PubMed  Google Scholar 

  35. Padilla, F., R. Puts, L. Vico, and K. Raum. Stimulation of bone repair with ultrasound: a review of the possible mechanic effects. Ultrasonics 54:1125–1145, 2014.

    Article  CAS  PubMed  Google Scholar 

  36. Parvizi, J., V. Parpura, J. F. Greenleaf, and M. E. Bolander. Calcium signaling is required for ultrasound-stimulated aggrecan synthesis by rat chondrocytes. J. Orthop. Res. 20:51–57, 2002.

    Article  CAS  PubMed  Google Scholar 

  37. Pessina, G. P., C. Aldinucci, M. Palmi, G. Sgaragli, A. Benocci, A. Meini, and F. Pessina. Pulsed electromagnetic fields affect the intracellular calcium concentrations in human astrocytoma cells. Bioelectromagnetics 22:503–510, 2001.

    Article  CAS  PubMed  Google Scholar 

  38. Plaksin, M., S. Shoham, and E. Kimmel. Intramembrane cavitation as a predictive bio-piezoelectric mechanism for ultrasonic brain stimulation. Phys. Rev. X 4:011004, 2014.

    Google Scholar 

  39. Pounder, N. M., and A. J. Harrison. Low intensity pulsed ultrasound for fracture healing: a review of the clinical evidence and the associated biological mechanism of action. Ultrasonics 48:330–338, 2008.

    Article  CAS  PubMed  Google Scholar 

  40. Roderick, H. L., and S. J. Cook. Ca2 + signalling checkpoints in cancer: remodelling Ca2+ for cancer cell proliferation and survival. Nat. Rev. Cancer 8:361–375, 2008.

    Article  CAS  PubMed  Google Scholar 

  41. Sanderson, M. J., A. C. Charles, S. Boitano, and E. R. Dirksen. Mechanisms and function of intercellular calcium signaling. Mol. Cell Endocrinol 98:173–187, 1994.

    Article  CAS  PubMed  Google Scholar 

  42. Simone, L. C., S. Caplan, and N. Naslavsky. Role of phosphatidylinositol 4,5-bisphosphate in regulating EHD2 plasma membrane localization. PLoS ONE 8:e74519, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Takada, H., K. Furuya, and M. Sokabe. Mechanosensitive ATP release from hemichannels and Ca2+ influx through TRPC6 accelerate wound closure in keratinocytes. J. Cell Sci. 127:4159–4171, 2014.

    Article  CAS  PubMed  Google Scholar 

  44. Tan, T., J. Xie, Z. Tong, T. Liu, X. Chen, and X. Tian. Repetitive transcranial magnetic stimulation increases excitability of hippocampal CA1 pyramidal neurons. Brain Res. 1520:23–35, 2013.

    Article  CAS  PubMed  Google Scholar 

  45. Thi, M. M., S. Islam, S. O. Suadicani, and D. C. Spray. Connexin43 and Pannexin1 Channels in Osteoblasts: Who Is the “Hemichannel”? J. Membr. Biol. 245:401–409, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Weitz, A. C., N. S. Lee, C. W. Yoon, A. Bonyad, K. S. Goo, S. Kim, S. Moon, H. Jung, Q. Zhou, R. H. Chow, and K. K. Shung. Functional assay of cancer cell invasion potential based on mechanotransduction of focused ultrasound. Front. Oncol. 7:161, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Xiao, E., C. Chen, and Y. Zhang. The mechanosensor of mesenchymal stem cells: mechanosensitive channel or cytoskeleton? Stem Cell Res. Ther 7:140, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Xiao, E., H. Q. Yang, Y. H. Gan, D. H. Duan, L. H. He, Y. Guo, S. Q. Wang, and Y. Zhang. Brief reports: TRPM7 Senses mechanical stimulation inducing osteogenesis in human bone marrow mesenchymal stem cells. Stem Cells 33:615–621, 2015.

    Article  PubMed  Google Scholar 

  49. Yoon, J. H., E. Y. Roh, S. Shin, N. H. Jung, E. Y. Song, D. S. Lee, K. S. Han, J. S. Kim, B. J. Kim, H. W. Jeon, and K. S. Yoon. Introducing pulsed low-intensity ultrasound to culturing human umbilical cord-derived mesenchymal stem cells. Biotechnol. Lett. 31:329–335, 2009.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health under Grant No. P41-EB002182 to Dr. K. Kirk Shung. We thank Hae Gyun Lim and Nestor Cabrera Muñoz for their help on the transducer fabrication. We thank Madison Zitting for proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Kirk Shung.

Additional information

Associate Editor Konstantinos Konstantopoulos oversaw the review of this article.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, C.W., Jung, H., Goo, K. et al. Low-Intensity Ultrasound Modulates Ca2+ Dynamics in Human Mesenchymal Stem Cells via Connexin 43 Hemichannel. Ann Biomed Eng 46, 48–59 (2018). https://doi.org/10.1007/s10439-017-1949-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-017-1949-7

Keywords

Navigation