Abstract
Peripheral arterio-venous malformations (pAVMs) are congenital vascular anomalies that require treatment, due to their severe clinical consequences. The complexity of lesions often leads to misdiagnosis and ill-planned treatments. To improve disease management, we developed a computational model to quantify the hemodynamic effects of key angioarchitectural features of pAVMs. Hemodynamic results were used to predict the transport of contrast agent (CA), which allowed us to compare our findings to digital subtraction angiography (DSA) recordings of patients. The model is based on typical pAVM morphologies and a generic vessel network that represents realistic vascular feeding and draining components related to lesions. A lumped-parameter description of the vessel network was employed to compute blood pressure and flow rates. CA-transport was determined by coupling the model to a 1D advection–diffusion equation. Results show that the extent of hemodynamic effects of pAVMs, such as arterial steal and venous hypertension, strongly depends on the lesion type and its vascular architecture. Dimensions of shunting vessels strongly influence hemodynamic parameters. Our results underline the importance of the dynamics of CA-transport in diagnostic DSA images. In this context, we identified a set of temporal CA-transport parameters, which are indicative of the presence and specific morphology of pAVMs.








Similar content being viewed by others
Abbreviations
- AVM:
-
Arterio-venous malformation
- cAVM:
-
Cerebral arterio-venous malformation
- pAVM:
-
Peripheral arterio-venous malformation
- MR:
-
Magnetic resonance
- DSA:
-
Digital subtraction angiography
- CA:
-
Contrast agent
- LPM:
-
Lumped parameter model
- ATA:
-
Anterior tibial artery
- PTA:
-
Posterior tibial artery
- FbA:
-
Fibular artery
- MDA:
-
Medial and dorsal arteries in the foot
- DA:
-
Digital arteries in the foot
- DV:
-
Digital veins in the foot
- MDV:
-
Medial and dorsal veins in the foot
- PTV:
-
Posterior tibial vein
- ATV:
-
Anterior tibial vein
- FbV:
-
Fibular vein
- GSV:
-
Great saphenous vein
- SSV:
-
Small saphenous vein
- CO:
-
Cardiac output
References
Agur, A. M. R., and A. F. Dalley. Grant’s Atlas of Anatomy. Baltimore: Lippincott Williams & Wilkins, 2009, 884 pp.
Al-Adnani, M., S. Williams, D. Rampling, M. Ashworth, M. Malone, and N. J. Sebire. Histopathological reporting of paediatric cutaneous vascular anomalies in relation to proposed multidisciplinary classification system. J. Clin. Pathol. 59:1278–1282, 2006.
Bérczi, V., A. Á. Molnár, A. Apor, V. Kovács, C. Ruzics, C. Várallyay, K. Hüttl, E. Monos, and G. L. Nádasy. Non-invasive assessment of human large vein diameter, capacity, distensibility and ellipticity in situ: dependence on anatomical location, age, body position and pressure. Eur. J. Appl. Physiol. 95:283–289, 2005.
Brouillard, P., and M. Vikkula. Vascular malformations: localized defects in vascular morphogenesis. Clin. Genet. 63:340–351, 2003.
Chen, Y. G., P. A. Cook, M. A. McClinton, R. A. Espinosa, and E. F. Wilgis. Microarterial anatomy of the lesser toe proximal interphalangeal joints. J. Hand Surg. 23:256–260, 1998.
Chung, T. J. Computational Fluid Dynamics. London: Cambridge University Press, 2014, 1058 pp.
Crank, J., and P. Nicolson. A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Math. Proc. Camb. Philos. Soc. 43:50–67, 1947.
Dinenno, F. A., P. P. Jones, D. R. Seals, and H. Tanaka. Limb blood flow and vascular conductance are reduced with age in healthy humans: relation to elevations in sympathetic nerve activity and declines in oxygen demand. Circulation 100:164–170, 1999.
Erbertseder, K., J. Reichold, B. Flemisch, P. Jenny, and R. Helmig. A coupled discrete/continuum model for describing cancer-therapeutic transport in the lung. PLoS ONE 7:e31966, 2012.
Essig, M., R. Engenhart, M. V. Knopp, M. Bock, J. Scharf, J. Debus, F. Wenz, H. Hawighorst, L. R. Schad, and G. van Kaick. Cerebral arteriovenous malformations: improved nidus demarcation by means of dynamic tagging MR-angiography. Magn. Reson. Imaging 14:227–233, 1996.
Formaggia, L., A. Quarteroni, and A. Veneziani. Cardiovascular Mathematics: Modeling and Simulation of the Circulatory System. Springer, Milan, 2010, 528 pp.
Fuster, V., R. Walsh, and R. Harrington. Hurst’s the Heart, 13th edn, Vol. 1. New York: McGraw-Hill Education/Medical, 2011, 2500 pp.
Gamble, G., J. Zorn, G. Sanders, S. MacMahon, and N. Sharpe. Estimation of arterial stiffness, compliance, and distensibility from M-mode ultrasound measurements of the common carotid artery. Stroke J. Cereb. Circ. 25:11–16, 1994.
Gao, E., W. L. Young, G. J. Hademenos, T. F. Massoud, R. R. Sciacca, Q. Ma, S. Joshi, H. Mast, J. P. Mohr, S. Vulliemoz, and J. Pile-Spellman. Theoretical modelling of arteriovenous malformation rupture risk: a feasibility and validation study. Med. Eng. Phys. 20:489–501, 1998.
Goldberger, A. L., L. A. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C. K. Peng, and H. E. Stanley. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101:E215–E220, 2000.
Golovin, S. V., A. K. Khe, and K. A. Gadylshina. Hydraulic model of cerebral arteriovenous malformations. J. Fluid Mech. 797:110–129, 2016.
Golub, G. H. Matrix Computations. Baltimore: Johns Hopkins University Press, 2013, 756 pp.
Griessenauer, C. J., P. Dolati, A. Thomas, and C. S. Ogilvy. Arteriovenous malformations: how we changed our practice. In: Controversies in Vascular Neurosurgery, edited by E. Veznedaroglu. Cham: Springer, 2016, pp. 157–164. doi:10.1007/978-3-319-27315-0_14.
Hademenos, G. J., and T. F. Massoud. Risk of intracranial arteriovenous malformation rupture due to venous drainage impairment. A theoretical analysis. Stroke J. Cereb. Circ. 27:1072–1083, 1996.
Hademenos, G. J., T. F. Massoud, and F. Viñuela. A biomathematical model of intracranial arteriovenous malformations based on electrical network analysis: theory and hemodynamics. Neurosurgery 38:1005–1014, 1996; (discussion 1014–1015).
Hao, Q., and B. B. Lieber. Dispersive transport of angiographic contrast during antegrade arterial injection. Cardiovasc. Eng. Technol. 3:171–178, 2012.
Holland, C. K., J. M. Brown, L. M. Scoutt, and K. J. Taylor. Lower extremity volumetric arterial blood flow in normal subjects. Ultrasound Med. Biol. 24:1079–1086, 1998.
Hussain, S. T., R. E. Smith, R. F. Wood, and M. Bland. Observer variability in volumetric blood flow measurements in leg arteries using duplex ultrasound. Ultrasound Med. Biol. 22:287–291, 1996.
Kalayci, T. O., F. Sonmezgoz, M. Apaydin, M. F. Inci, A. F. Sarp, B. Birlik, M. E. Uluç, O. Oyar, and M. Kestelli. Venous flow volume measured by duplex ultrasound can be used as an indicator of impaired tissue perfusion in patients with peripheral arterial disease. Med. Ultrason. 17:482–486, 2015.
Madani, H., J. Farrant, N. Chhaya, I. Anwar, H. Marmery, A. Platts, and B. Holloway. Peripheral limb vascular malformations: an update of appropriate imaging and treatment options of a challenging condition. Br. J. Radiol. 88:20140406, 2015.
Orlowski, P., P. Summers, J. A. Noble, J. Byrne, and Y. Ventikos. Computational modelling for the embolization of brain arteriovenous malformations. Med. Eng. Phys. 34:873–881, 2012.
Ottesen, J. T., M. S. Olufsen, and J. K. Larsen. Applied Mathematical Models in Human Physiology. Philadelphia: Society for Industrial and Applied Mathematics, 2004, 184 pp.
Pollak, Y., B. T. Katzen, and W. Pollak. High-output congestive failure in a patient with pulmonary arteriovenous malformations. Cardiol. Rev. 10:188–192, 2002.
Ricci, S., L. Moro, and R. Antonelli Incalzi. The foot venous system: anatomy, physiology and relevance to clinical practice. Dermatol. Surg. 40:225–233, 2014.
Richter, G. T., and A. B. Friedman. Hemangiomas and vascular malformations: current theory and management. Int. J. Pediatr. 2012:e645678, 2012.
Sabatier, M. J., L. Stoner, M. Reifenberger, and K. McCully. Doppler ultrasound assessment of posterior tibial artery size in humans. J. Clin. Ultrasound (JCU) 34:223–230, 2006.
Saeed, M., M. Villarroel, A. T. Reisner, G. Clifford, L.-W. Lehman, G. Moody, T. Heldt, T. H. Kyaw, B. Moody, and R. G. Mark. Multiparameter intelligent monitoring in intensive care II (MIMIC-II): a public-access intensive care unit database. Crit. Care Med. 39:952–960, 2011.
Szpinda, M. An angiographic study of the anterior tibial artery in patients with aortoiliac occlusive disease. Folia Morphol. 65:126–131, 2006.
Tasnádi, G. Epidemiology and etiology of congenital vascular malformations. Semin. Vasc. Surg. 6:200–203, 1993.
Williamson, J. H. Low-storage Runge–Kutta schemes. J. Comput. Phys. 35:48–56, 1980.
Yakes, W., and I. Baumgartner. Interventional treatment of arterio-venous malformations. Gefässchirurgie 19:325–330, 2014.
Yakes, W. F. Endovascular management of high-flow arteriovenous malformations. Semin. Interv. Radiol. 21:49–58, 2004.
Yakes, W. F., and A. M. Yakes. Classification of arteriovenous malformation and therapeutic implication. In: Hemangiomas and Vascular Malformations, edited by R. Mattassi, D. A. Loose, and M. Vaghi. Milan: Springer, 2015, pp. 263–276. doi:10.1007/978-88-470-5673-2_33.
Conflict of interest
None.
Author information
Authors and Affiliations
Corresponding author
Additional information
Associate Editor Kerry Hourigan oversaw the review of this article.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Frey, S., Haine, A., Kammer, R. et al. Hemodynamic Characterization of Peripheral Arterio-venous Malformations. Ann Biomed Eng 45, 1449–1461 (2017). https://doi.org/10.1007/s10439-017-1821-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10439-017-1821-9