Skip to main content

Advertisement

Log in

Hemodynamic Characterization of Peripheral Arterio-venous Malformations

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Peripheral arterio-venous malformations (pAVMs) are congenital vascular anomalies that require treatment, due to their severe clinical consequences. The complexity of lesions often leads to misdiagnosis and ill-planned treatments. To improve disease management, we developed a computational model to quantify the hemodynamic effects of key angioarchitectural features of pAVMs. Hemodynamic results were used to predict the transport of contrast agent (CA), which allowed us to compare our findings to digital subtraction angiography (DSA) recordings of patients. The model is based on typical pAVM morphologies and a generic vessel network that represents realistic vascular feeding and draining components related to lesions. A lumped-parameter description of the vessel network was employed to compute blood pressure and flow rates. CA-transport was determined by coupling the model to a 1D advection–diffusion equation. Results show that the extent of hemodynamic effects of pAVMs, such as arterial steal and venous hypertension, strongly depends on the lesion type and its vascular architecture. Dimensions of shunting vessels strongly influence hemodynamic parameters. Our results underline the importance of the dynamics of CA-transport in diagnostic DSA images. In this context, we identified a set of temporal CA-transport parameters, which are indicative of the presence and specific morphology of pAVMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

AVM:

Arterio-venous malformation

cAVM:

Cerebral arterio-venous malformation

pAVM:

Peripheral arterio-venous malformation

MR:

Magnetic resonance

DSA:

Digital subtraction angiography

CA:

Contrast agent

LPM:

Lumped parameter model

ATA:

Anterior tibial artery

PTA:

Posterior tibial artery

FbA:

Fibular artery

MDA:

Medial and dorsal arteries in the foot

DA:

Digital arteries in the foot

DV:

Digital veins in the foot

MDV:

Medial and dorsal veins in the foot

PTV:

Posterior tibial vein

ATV:

Anterior tibial vein

FbV:

Fibular vein

GSV:

Great saphenous vein

SSV:

Small saphenous vein

CO:

Cardiac output

References

  1. Agur, A. M. R., and A. F. Dalley. Grant’s Atlas of Anatomy. Baltimore: Lippincott Williams & Wilkins, 2009, 884 pp.

  2. Al-Adnani, M., S. Williams, D. Rampling, M. Ashworth, M. Malone, and N. J. Sebire. Histopathological reporting of paediatric cutaneous vascular anomalies in relation to proposed multidisciplinary classification system. J. Clin. Pathol. 59:1278–1282, 2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bérczi, V., A. Á. Molnár, A. Apor, V. Kovács, C. Ruzics, C. Várallyay, K. Hüttl, E. Monos, and G. L. Nádasy. Non-invasive assessment of human large vein diameter, capacity, distensibility and ellipticity in situ: dependence on anatomical location, age, body position and pressure. Eur. J. Appl. Physiol. 95:283–289, 2005.

    Article  PubMed  Google Scholar 

  4. Brouillard, P., and M. Vikkula. Vascular malformations: localized defects in vascular morphogenesis. Clin. Genet. 63:340–351, 2003.

    Article  CAS  PubMed  Google Scholar 

  5. Chen, Y. G., P. A. Cook, M. A. McClinton, R. A. Espinosa, and E. F. Wilgis. Microarterial anatomy of the lesser toe proximal interphalangeal joints. J. Hand Surg. 23:256–260, 1998.

    Article  CAS  Google Scholar 

  6. Chung, T. J. Computational Fluid Dynamics. London: Cambridge University Press, 2014, 1058 pp.

  7. Crank, J., and P. Nicolson. A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Math. Proc. Camb. Philos. Soc. 43:50–67, 1947.

    Article  Google Scholar 

  8. Dinenno, F. A., P. P. Jones, D. R. Seals, and H. Tanaka. Limb blood flow and vascular conductance are reduced with age in healthy humans: relation to elevations in sympathetic nerve activity and declines in oxygen demand. Circulation 100:164–170, 1999.

    Article  CAS  PubMed  Google Scholar 

  9. Erbertseder, K., J. Reichold, B. Flemisch, P. Jenny, and R. Helmig. A coupled discrete/continuum model for describing cancer-therapeutic transport in the lung. PLoS ONE 7:e31966, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Essig, M., R. Engenhart, M. V. Knopp, M. Bock, J. Scharf, J. Debus, F. Wenz, H. Hawighorst, L. R. Schad, and G. van Kaick. Cerebral arteriovenous malformations: improved nidus demarcation by means of dynamic tagging MR-angiography. Magn. Reson. Imaging 14:227–233, 1996.

    Article  CAS  PubMed  Google Scholar 

  11. Formaggia, L., A. Quarteroni, and A. Veneziani. Cardiovascular Mathematics: Modeling and Simulation of the Circulatory System. Springer, Milan, 2010, 528 pp.

  12. Fuster, V., R. Walsh, and R. Harrington. Hurst’s the Heart, 13th edn, Vol. 1. New York: McGraw-Hill Education/Medical, 2011, 2500 pp.

  13. Gamble, G., J. Zorn, G. Sanders, S. MacMahon, and N. Sharpe. Estimation of arterial stiffness, compliance, and distensibility from M-mode ultrasound measurements of the common carotid artery. Stroke J. Cereb. Circ. 25:11–16, 1994.

    Article  CAS  Google Scholar 

  14. Gao, E., W. L. Young, G. J. Hademenos, T. F. Massoud, R. R. Sciacca, Q. Ma, S. Joshi, H. Mast, J. P. Mohr, S. Vulliemoz, and J. Pile-Spellman. Theoretical modelling of arteriovenous malformation rupture risk: a feasibility and validation study. Med. Eng. Phys. 20:489–501, 1998.

    Article  CAS  PubMed  Google Scholar 

  15. Goldberger, A. L., L. A. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C. K. Peng, and H. E. Stanley. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101:E215–E220, 2000.

    Article  CAS  PubMed  Google Scholar 

  16. Golovin, S. V., A. K. Khe, and K. A. Gadylshina. Hydraulic model of cerebral arteriovenous malformations. J. Fluid Mech. 797:110–129, 2016.

    Article  CAS  Google Scholar 

  17. Golub, G. H. Matrix Computations. Baltimore: Johns Hopkins University Press, 2013, 756 pp.

  18. Griessenauer, C. J., P. Dolati, A. Thomas, and C. S. Ogilvy. Arteriovenous malformations: how we changed our practice. In: Controversies in Vascular Neurosurgery, edited by E. Veznedaroglu. Cham: Springer, 2016, pp. 157–164. doi:10.1007/978-3-319-27315-0_14.

    Chapter  Google Scholar 

  19. Hademenos, G. J., and T. F. Massoud. Risk of intracranial arteriovenous malformation rupture due to venous drainage impairment. A theoretical analysis. Stroke J. Cereb. Circ. 27:1072–1083, 1996.

    Article  CAS  Google Scholar 

  20. Hademenos, G. J., T. F. Massoud, and F. Viñuela. A biomathematical model of intracranial arteriovenous malformations based on electrical network analysis: theory and hemodynamics. Neurosurgery 38:1005–1014, 1996; (discussion 1014–1015).

    Article  CAS  PubMed  Google Scholar 

  21. Hao, Q., and B. B. Lieber. Dispersive transport of angiographic contrast during antegrade arterial injection. Cardiovasc. Eng. Technol. 3:171–178, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Holland, C. K., J. M. Brown, L. M. Scoutt, and K. J. Taylor. Lower extremity volumetric arterial blood flow in normal subjects. Ultrasound Med. Biol. 24:1079–1086, 1998.

    Article  CAS  PubMed  Google Scholar 

  23. Hussain, S. T., R. E. Smith, R. F. Wood, and M. Bland. Observer variability in volumetric blood flow measurements in leg arteries using duplex ultrasound. Ultrasound Med. Biol. 22:287–291, 1996.

    Article  CAS  PubMed  Google Scholar 

  24. Kalayci, T. O., F. Sonmezgoz, M. Apaydin, M. F. Inci, A. F. Sarp, B. Birlik, M. E. Uluç, O. Oyar, and M. Kestelli. Venous flow volume measured by duplex ultrasound can be used as an indicator of impaired tissue perfusion in patients with peripheral arterial disease. Med. Ultrason. 17:482–486, 2015.

    PubMed  Google Scholar 

  25. Madani, H., J. Farrant, N. Chhaya, I. Anwar, H. Marmery, A. Platts, and B. Holloway. Peripheral limb vascular malformations: an update of appropriate imaging and treatment options of a challenging condition. Br. J. Radiol. 88:20140406, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Orlowski, P., P. Summers, J. A. Noble, J. Byrne, and Y. Ventikos. Computational modelling for the embolization of brain arteriovenous malformations. Med. Eng. Phys. 34:873–881, 2012.

    Article  PubMed  Google Scholar 

  27. Ottesen, J. T., M. S. Olufsen, and J. K. Larsen. Applied Mathematical Models in Human Physiology. Philadelphia: Society for Industrial and Applied Mathematics, 2004, 184 pp.

  28. Pollak, Y., B. T. Katzen, and W. Pollak. High-output congestive failure in a patient with pulmonary arteriovenous malformations. Cardiol. Rev. 10:188–192, 2002.

    Article  PubMed  Google Scholar 

  29. Ricci, S., L. Moro, and R. Antonelli Incalzi. The foot venous system: anatomy, physiology and relevance to clinical practice. Dermatol. Surg. 40:225–233, 2014.

    Article  CAS  PubMed  Google Scholar 

  30. Richter, G. T., and A. B. Friedman. Hemangiomas and vascular malformations: current theory and management. Int. J. Pediatr. 2012:e645678, 2012.

    Article  Google Scholar 

  31. Sabatier, M. J., L. Stoner, M. Reifenberger, and K. McCully. Doppler ultrasound assessment of posterior tibial artery size in humans. J. Clin. Ultrasound (JCU) 34:223–230, 2006.

    Article  Google Scholar 

  32. Saeed, M., M. Villarroel, A. T. Reisner, G. Clifford, L.-W. Lehman, G. Moody, T. Heldt, T. H. Kyaw, B. Moody, and R. G. Mark. Multiparameter intelligent monitoring in intensive care II (MIMIC-II): a public-access intensive care unit database. Crit. Care Med. 39:952–960, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Szpinda, M. An angiographic study of the anterior tibial artery in patients with aortoiliac occlusive disease. Folia Morphol. 65:126–131, 2006.

    CAS  Google Scholar 

  34. Tasnádi, G. Epidemiology and etiology of congenital vascular malformations. Semin. Vasc. Surg. 6:200–203, 1993.

    PubMed  Google Scholar 

  35. Williamson, J. H. Low-storage Runge–Kutta schemes. J. Comput. Phys. 35:48–56, 1980.

    Article  Google Scholar 

  36. Yakes, W., and I. Baumgartner. Interventional treatment of arterio-venous malformations. Gefässchirurgie 19:325–330, 2014.

    Article  Google Scholar 

  37. Yakes, W. F. Endovascular management of high-flow arteriovenous malformations. Semin. Interv. Radiol. 21:49–58, 2004.

    Article  Google Scholar 

  38. Yakes, W. F., and A. M. Yakes. Classification of arteriovenous malformation and therapeutic implication. In: Hemangiomas and Vascular Malformations, edited by R. Mattassi, D. A. Loose, and M. Vaghi. Milan: Springer, 2015, pp. 263–276. doi:10.1007/978-88-470-5673-2_33.

    Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabrina Frey.

Additional information

Associate Editor Kerry Hourigan oversaw the review of this article.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frey, S., Haine, A., Kammer, R. et al. Hemodynamic Characterization of Peripheral Arterio-venous Malformations. Ann Biomed Eng 45, 1449–1461 (2017). https://doi.org/10.1007/s10439-017-1821-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-017-1821-9

Keywords