Skip to main content
Log in

In-Vivo Electrical Impedance Measurement in Mastoid Bone

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Nerve monitoring is a safety mechanism to detect the proximity between surgical instruments and important nerves during surgical bone preparation. In temporal bone, this technique is highly specific and sensitive at distances below 0.1 mm, but remains unreliable for distances above this threshold. A deeper understanding of the patient-specific bone electric properties is required to improve this range of detection. A sheep animal model has been used to characterize bone properties in vivo. Impedance measurements have been performed at low frequencies (<1 kHz) between two electrodes placed inside holes drilled into the sheep mastoid bone. An electric circuit composed of a resistor and a Fricke constant phase element was able to accurately describe the experimental measurements. Bone resistivity was shown to be linearly dependent on the inter-electrode distance and the local bone density. Based on this model, the amount of bone material between the electrodes could be predicted with an error of 0.7 mm. Our results indicate that bone could be described as an ideal resistor while the electrochemical processes at the electrode-tissue interface are characterized by a constant phase element. These results should help increasing the safety of surgical drilling procedures by better predicting the distance to critical nerve structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Ansó, J., C. Dür, K. Gavaghan, H. Rohrbach, N. Gerber, T. Williamson, E. M. Calvo, T. W. Balmer, C. Precht, D. Ferrario, M. S. Dettmer, K. M. Rösler, M. D. Caversaccio, B. Bell, and S. Weber. A neuromonitoring approach to facial nerve preservation during image-guided robotic cochlear implantation. Otol. Neurotol. 37:89–98, 2016.

    Article  PubMed  Google Scholar 

  2. Ansó, J., C. Stahl, N. Gerber, T. M. Williamson, K. Gavaghan, M. Caversaccio, S. Weber, and B. Bell. Feasibility of using EMG for early detection of the facial nerve during robotic direct cochlear access. Otol. Neurotol. 35:545–554, 2014.

    Article  PubMed  Google Scholar 

  3. Bell, B., N. Gerber, T. Williamson, K. Gavaghan, W. Wimmer, M. Caversaccio, and S. Weber. In vitro accuracy evaluation of image-guided robot system for direct cochlear access. Otol. Neurotol. 34:1284–1290, 2013.

    Article  PubMed  Google Scholar 

  4. Bell, B., C. Stieger, N. Gerber, A. Arnold, C. Nauer, V. Hamacher, M. Kompis, L. Nolte, M. Caversaccio, and S. Weber. A self-developed and constructed robot for minimally invasive cochlear implantation. Acta Otolaryngol. 132:355–360, 2012.

    Article  PubMed  Google Scholar 

  5. Bernardeschi, D., N. Meskine, N. AlOtaibi, R. Ablonczy, M. Kalamarides, A. B. Grayeli, and O. Sterkers. Continuous facial nerve stimulating burr for otologic surgeries. Otol. Neurotol. 32:1347–1351, 2011.

    Article  PubMed  Google Scholar 

  6. Cordero, A., M. del mar Medina, A. Alonso, and T. Labatut. Stapedectomy in sheep: an animal model for surgical training. Otol. Neurotol. 32:742–747, 2011.

    Article  PubMed  Google Scholar 

  7. Delgado, T. E., W. A. Bucheit, H. R. Rosenholtz, and S. Chrissian. Intraoperative monitoring of facila muscle evoked responses obtained by intracranial stimulation of the facila nerve: a more accurate technique for facila nerve dissection. Neurosurgery 4:418–421, 1979.

    Article  CAS  PubMed  Google Scholar 

  8. Dong, C. C. J., D. B. Macdonald, R. Akagami, B. Westerberg, A. Alkhani, I. Kanaan, and M. Hassounah. Intraoperative facial motor evoked potential monitoring with transcranial electrical stimulation during skull base surgery. Clin. Neurophysiol. 116:588–596, 2005.

    Article  PubMed  Google Scholar 

  9. Dralle, H., C. Sekulla, K. Lorenz, M. Brauckhoff, and A. Machens. Intraoperative monitoring of the recurrent laryngeal nerve in thyroid surgery. World J. Surg. 32:1358–1366, 2008.

    Article  CAS  PubMed  Google Scholar 

  10. Gabriel, C., S. Gabriel, and E. Corthout. The dielectric properties of biological tissues: I. Literature survey. Phys. Med. Biol. 41:2231–2249, 1996.

    Article  CAS  PubMed  Google Scholar 

  11. Geddes, L. A., C. P. Da Costa, and G. Wise. The impedance of stainless-steel electrodes. Med. Biol. Eng. 9:511–521, 1971.

    Article  CAS  PubMed  Google Scholar 

  12. Geers, A. E., J. G. Nicholas, and A. L. Sedey. Language skills of children with early cochlear implantation. Ear Hear. 24:46S–58S, 2003.

    Article  PubMed  Google Scholar 

  13. Gerber, N., B. Bell, K. Gavaghan, C. Weisstanner, M. Caversaccio, and S. Weber. Surgical planning tool for robotically assisted hearing aid implantation. Int. J. Comput. Assist. Radiol. Surg. 9:11–20, 2014.

    Article  PubMed  Google Scholar 

  14. Gurr, A., T. Stark, G. Probst, and S. Dazert. The temporal bone of lamb and pig as an alternative in ENT-education. Laryngorhinootologie 89:17–24, 2010.

    Article  CAS  PubMed  Google Scholar 

  15. Heman-Ackah, S. E., S. Gupta, and A. K. Lalwani. Is facial nerve integrity monitoring of value in chronic ear surgery? Laryngoscope 123:2–3, 2013.

    Article  PubMed  Google Scholar 

  16. Kalvøy, H. Needle guidance in clinical applications based on electrical impedance. Ann. Biomed. Eng. 38:2371–2382, 2010.

    Article  PubMed  Google Scholar 

  17. Kalvøy, H., L. Frich, S. Grimnes, O. G. Martinsen, P. K. Hol, and A. Stubhaug. Impedance-based tissue discrimination for needle guidance. Physiol. Meas. 30:129–140, 2009.

    Article  PubMed  Google Scholar 

  18. Kalvøy, H., P. Høyum, S. Grimnes, and Ø. G. Martinsen. From impedance theory to needle electrode guidance in tissue. J. Phys. Conf. Ser. 224:12072, 2010.

    Article  Google Scholar 

  19. Kalvøy, H., G. K. Johnsen, O. G. Martinsen, and S. Grimnes. New method for separation of electrode polarization impedance from measured tissue impedance. Open Biomed. Eng. J. 5:8–13, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kalvøy, H., C. Tronstad, B. Nordbotten, S. Grimnes, and Ø. G. Martinsen. Electrical impedance of stainless steel needle electrodes. Ann. Biomed. Eng. 38:2371–2382, 2010.

    Article  PubMed  Google Scholar 

  21. Labadie, R. F., R. Balachandran, J. H. Noble, G. S. Blachon, J. E. Mitchell, F. A. Reda, B. M. Dawant, and J. M. Fitzpatrick. Minimally invasive image-guided cochlear implantation surgery: first report of clinical implementation. Laryngoscope 124:1915–1922, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Leonetti, J. P., G. J. Matz, P. G. Smith, and D. L. Beck. Facial nerve monitoring in otologic surgery: clinical indications and intraoperative technique. Ann. Otol. Rhinol. Laryngol. 99:911–918, 1990.

    Article  CAS  PubMed  Google Scholar 

  23. Liboff, A. R., R. A. Rinaldi, L. S. Lavine, and M. H. Shamos. On electrical conduction in living bone. Clin. Orthop. Relat. Res. 106:330–335, 1975.

    Article  Google Scholar 

  24. Prass, R. Iatrogenic facial nerve injury: the role of facial nerve monitoring. Otolaryngol. Clin. North Am. 29:265–275, 1996.

    CAS  PubMed  Google Scholar 

  25. Prass, R., and H. Lüders. Constant-current versus constant-voltage stimulation. Neurosurgery 62:622–623, 1985.

    CAS  Google Scholar 

  26. Schwan, H. Electrode polarization impedance and measurements in biological materials. Ann. N. Y. Acad. Sci. 148:191–209, 1968.

    Article  CAS  PubMed  Google Scholar 

  27. Schwan, H. P. Linear and nonlinear electrode polarization and biological materials. Ann. Biomed. Eng. 20:269–288, 1992.

    Article  CAS  PubMed  Google Scholar 

  28. Seibel, V. A. A., L. Lavinsky, and J. A. P. De Oliveira. Morphometric study of the external and middle ear anatomy in sheep: a possible model for ear experiments. Clin. Anat. 19:503–509, 2006.

    Article  PubMed  Google Scholar 

  29. Sierpowska, J., M. A. Hakulinen, J. Töyräs, J. S. Day, H. Weinans, I. Kiviranta, J. S. Jurvelin, and R. Lappalainen. Interrelationships between electrical properties and microstructure of human trabecular bone. Phys. Med. Biol. 51:5289–5303, 2006.

    Article  CAS  PubMed  Google Scholar 

  30. Sierpowska, J., M. A. Hakulinen, J. Töyräs, J. S. Day, H. Weinans, J. S. Jurvelin, and R. Lappalainen. Prediction of mechanical properties of human trabecular bone by electrical measurements. Physiol. Meas. 26:S119–S131, 2005.

    Article  CAS  PubMed  Google Scholar 

  31. Sierpowska, J., M. J. Lammi, M. A. Hakulinen, J. S. Jurvelin, R. Lappalainen, and J. Töyräs. Effect of human trabecular bone composition on its electrical properties. Med. Eng. Phys. 29:845–852, 2007.

    Article  CAS  PubMed  Google Scholar 

  32. Sierpowska, J., J. Töyräs, M. A. Hakulinen, S. Saarakkala, J. S. Jurvelin, and R. Lappalainen. Electrical and dielectric properties of bovine trabecular bone–relationships with mechanical properties and mineral density. Phys. Med. Biol. 48:775–786, 2003.

    Article  CAS  PubMed  Google Scholar 

  33. Silverstein, H., and S. Rosenberg. Intraoperative facial nerve monitoring. Otolaryngol. Clin. North Am. 24:709–725, 1991.

    CAS  PubMed  Google Scholar 

  34. Silverstein, H., E. Smouha, and R. Jones. Routine identification of the facial nerve using electrical stimulation during otological and neurotological surgery. Laryngoscope 98:726–730, 1988.

    Article  CAS  PubMed  Google Scholar 

  35. Stecker, M. A review of intraoperative monitoring for spinal surgery. Surg. Neurol. Int. 3:174, 2012.

    Article  Google Scholar 

  36. Wanna, G. B., R. Balachandran, O. Majdani, J. Mitchell, and R. F. Labadie. Percutaneous access to the petrous apex in vitro using customized micro-stereotactic frames based on image-guided surgical technology. Acta Otolaryngol. 1–6, 2009.

Download references

Funding

This work is part of the HearRestore project, scientifically evaluated by the SNF, financed by the Swiss Confederation, and funded by Nano-Tera.ch.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Wyss Balmer.

Additional information

Associate Editor Peter E. McHugh oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wyss Balmer, T., Ansó, J., Muntane, E. et al. In-Vivo Electrical Impedance Measurement in Mastoid Bone. Ann Biomed Eng 45, 1122–1132 (2017). https://doi.org/10.1007/s10439-016-1758-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1758-4

Keywords

Navigation