Skip to main content
Log in

Controlled and Sequential Delivery of Fluorophores from 3D Printed Alginate-PLGA Tubes

  • Additive Manufacturing of Biomaterials, Tissues, and Organs
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Controlled drug delivery systems, that include sequential and/or sustained drug delivery, have been utilized to enhance the therapeutic effects of many current drugs by effectively delivering drugs in a time-dependent and repeatable manner. In this study, with the aid of 3D printing technology, a novel drug delivery device was fabricated and tested to evaluate sequential delivery functionality. With an alginate shell and a poly(lactic-co-glycolic acid) (PLGA) core, the fabricated tubes displayed sequential release of distinct fluorescent dyes and showed no cytotoxicity when incubated with the human embryonic kidney (HEK293) cell line or bone marrow stromal stem cells (BMSC). The controlled differential release of drugs or proteins through such a delivery system has the potential to be used in a wide variety of biomedical applications from treating cancer to regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Aw, M. S., J. Addai-Mensah, and D. Losic. A multi-drug delivery system with sequential release using titania nanotube arrays. Chem. Commun. 48:3348–3350, 2012.

    Article  CAS  Google Scholar 

  2. Do, A. V., B. Khorsand, S. M. Geary, and A. K. Salem. 3D Printing of scaffolds for tissue regeneration applications. Adv. Healthc. Mater. 4:1742–1762, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dolati, F., Y. Yu, Y. Zhang, A. M. De Jesus, E. A. Sander, and I. T. Ozbolat. In vitro evaluation of carbon-nanotube-reinforced bioprintable vascular conduits. Nanotechnology 25:145101, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Elangovan, S., S. R. D’Mello, L. Hong, R. D. Ross, C. Allamargot, D. V. Dawson, C. M. Stanford, G. K. Johnson, D. R. Sumner, and A. K. Salem. The enhancement of bone regeneration by gene activated matrix encoding for platelet derived growth factor. Biomaterials 35:737–747, 2014.

    Article  CAS  PubMed  Google Scholar 

  5. Elangovan, S., B. Khorsand, A. V. Do, L. Hong, A. Dewerth, M. Kormann, R. D. Ross, D. Rick Sumner, C. Allamargot, and A. K. Salem. Chemically modified RNA activated matrices enhance bone regeneration. J. Control Release 218:22–28, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Goyanes, A., A. B. M. Buanz, G. B. Hatton, S. Gaisford, and A. W. Basit. 3D printing of modified-release aminosalicylate (4-ASA and 5-ASA) tablets. Eur. J. Pharm. Biopharm. 89:157–162, 2015.

    Article  CAS  PubMed  Google Scholar 

  7. Hixson-Wallace, J. A., J. B. Dotson, and S. A. Blakey. Effect of regimen complexity on patient satisfaction and compliance with warfarin therapy. Clin. Appl. Thromb. Hemost. 7:33–37, 2001.

    Article  CAS  PubMed  Google Scholar 

  8. Iskakov, R. M., A. Kikuchi, and T. Okano. Time-programmed pulsatile release of dextran from calcium-alginate gel beads coated with carboxy-n-propylacrylamide copolymers. J Control Release 80:57–68, 2002.

    Article  CAS  PubMed  Google Scholar 

  9. Jimmy, B., and J. Jose. Patient medication adherence: Measures in daily practice. Oman Med. J. 26:155–159, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Jonathan, G., and A. Karim. 3D printing in pharmaceutics: A new tool for designing customized drug delivery systems. Int. J. Pharm. 499:376–394, 2016.

    Article  CAS  PubMed  Google Scholar 

  11. Journé, F., C. Chaboteaux, G. Laurent, and J. J. Body. Sequence-dependent synergistic effects of ibandronate in combination with antiestrogens on growth inhibition of estrogen receptor-positive breast cancer cells. Bone 38:52–53, 2006.

    Google Scholar 

  12. Khaled, S. A., J. C. Burley, M. R. Alexander, J. Yang, and C. J. Roberts. 3D printing of tablets containing multiple drugs with defined release profiles. Int. J. Pharm. 494:643–650, 2015.

    Article  CAS  PubMed  Google Scholar 

  13. Kiortsis, S., K. Kachrimanis, T. Broussali, and S. Malamataris. Drug release from tableted wet granulations comprising cellulosic (HPMC or HPC) and hydrophobic component. Eur. J. Pharm. Biopharm. 59:73–83, 2005.

    Article  CAS  PubMed  Google Scholar 

  14. Kost, J., and R. Langer. Responsive polymeric delivery systems. Adv. Drug Deliv. Rev. 64(Supplement):327–341, 2012.

    Article  Google Scholar 

  15. Lee, J.-H., K.-J. Chen, S.-H. Noh, M. A. Garcia, H. Wang, W.-Y. Lin, H. Jeong, B. J. Kong, D. B. Stout, J. Cheon, and H.-R. Tseng. On-demand drug release system for in vivo cancer treatment through self-assembled magnetic nanoparticles. Angew. Chem. Int. Ed. 52:4384–4388, 2013.

    Article  CAS  Google Scholar 

  16. Lu, P., K. Takai, V. M. Weaver, and Z. Werb. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harbor Perspectives in Biology 2011. doi:10.1101/cshperspect.a005058.

    PubMed  PubMed Central  Google Scholar 

  17. Lu, J. M., X. Wang, C. Marin-Muller, H. Wang, P. H. Lin, Q. Yao, and C. Chen. Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev. Mol. Diagn. 9:325–341, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Makadia, H. K., and S. J. Siegel. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3:1377–1397, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ozbolat, I. T. Bioprinting scale-up tissue and organ constructs for transplantation. Trends Biotechnol. 33:395–400, 2015.

    Article  CAS  PubMed  Google Scholar 

  20. Ozbolat, I. T., and M. Hospodiuk. Current advances and future perspectives in extrusion-based bioprinting. Biomaterials 76:321–343, 2016.

    Article  CAS  PubMed  Google Scholar 

  21. Pacheco, H., K. Vedantham, Aniket, A. Young, I. Marriott, and A. El-Ghannam. Tissue engineering scaffold for sequential release of vancomycin and rhBMP2 to treat bone infections. Journal of Biomedical Materials Research Part A 102:4213–4223, 2014.

    PubMed  Google Scholar 

  22. Rattanakit, P., S. E. Moulton, K. S. Santiago, S. Liawruangrath, and G. G. Wallace. Extrusion printed polymer structures: A facile and versatile approach to tailored drug delivery platforms. Int. J. Pharm. 422:254–263, 2012.

    Article  CAS  PubMed  Google Scholar 

  23. Schubert, C., M. C. van Langeveld, and L. A. Donoso. Innovations in 3D printing: a 3D overview from optics to organs. Br. J. Ophthalmol. 98:159–161, 2014.

    Article  PubMed  Google Scholar 

  24. Siegel, S. J., J. B. Kahn, K. Metzger, K. I. Winey, K. Werner, and N. Dan. Effect of drug type on the degradation rate of PLGA matrices. Eur. J. Pharm. Biopharm. 64:287–293, 2006.

    Article  CAS  PubMed  Google Scholar 

  25. Sun, Y., and S. Soh. Printing tablets with fully customizable release profiles for personalized medicine. Adv. Mater. 27:7847–7853, 2015.

    Article  CAS  PubMed  Google Scholar 

  26. Sundararaj, S. C., M. V. Thomas, T. D. Dziubla, and D. A. Puleo. Bioerodible system for sequential release of multiple drugs. Acta Biomater. 10:115–125, 2014.

    Article  CAS  PubMed  Google Scholar 

  27. van den Bemt, B. J., H. E. Zwikker, and C. H. van den Ende. Medication adherence in patients with rheumatoid arthritis: a critical appraisal of the existing literature. Expert Rev. Clin. Immunol. 8:337–351, 2012.

    Article  PubMed  Google Scholar 

  28. Ventola, C. L. Medical applications for 3D Printing: current and projected uses. P&T 39:704–711, 2014.

    Google Scholar 

  29. Zhang, Z., X. Qi, X. Li, J. Xing, X. Zhu, and Z. Wu. A novel pulsatile drug delivery system based on the physiochemical reaction between acrylic copolymer and organic acid: In vitro and in vivo evaluation. Int. J. Pharm. 462:66–73, 2014.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, Y., Y. Yu, F. Dolati, and I. T. Ozbolat. Effect of multiwall carbon nanotube reinforcement on coaxially extruded cellular vascular conduits. Mater. Sci. Eng. C 39:126–133, 2014.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by NSF grants 1462232 and CAREER 1349716, GAP Award from The University of Iowa, NIH grant 1R21DE024206-01A1, the Center for Biocatalysis and Bioprocessing Graduate Fellowship, and the Lyle and Sharon Bighley Professorship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aliasger K. Salem.

Additional information

Associate Editor Amir Abbas Zadpoor oversaw the review of this article.

Invited Manuscript to a Special Theme Issue of Annals of Biomedical Engineering on the topic of “Additive manufacturing and 3D printing of biomaterials” with a submission deadline of January 15th 2016 and revised submission deadline of April 30th 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Do, AV., Akkouch, A., Green, B. et al. Controlled and Sequential Delivery of Fluorophores from 3D Printed Alginate-PLGA Tubes. Ann Biomed Eng 45, 297–305 (2017). https://doi.org/10.1007/s10439-016-1648-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1648-9

Keywords

Navigation