Abstract
Repair and regeneration of muscle tissue following traumatic injuries or muscle diseases often presents a challenging clinical situation. If a significant amount of tissue is lost the native regenerative potential of skeletal muscle will not be able to grow to fill the defect site completely. Dental-derived mesenchymal stem cells (MSCs) in combination with appropriate scaffold material, present an advantageous alternative therapeutic option for muscle tissue engineering in comparison to current treatment modalities available. To date, there has been no report on application of gingival mesenchymal stem cells (GMSCs) in three-dimensional scaffolds for muscle tissue engineering. The objectives of the current study were to develop an injectable 3D RGD-coupled alginate scaffold with multiple growth factor delivery capacity for encapsulating GMSCs, and to evaluate the capacity of encapsulated GMSCs to differentiate into myogenic tissue in vitro and in vivo where encapsulated GMSCs were transplanted subcutaneously into immunocompromised mice. The results demonstrate that after 4 weeks of differentiation in vitro, GMSCs as well as the positive control human bone marrow mesenchymal stem cells (hBMMSCs) exhibited muscle cell-like morphology with high levels of mRNA expression for gene markers related to muscle regeneration (MyoD, Myf5, and MyoG) via qPCR measurement. Our quantitative PCR analyzes revealed that the stiffness of the RGD-coupled alginate regulates the myogenic differentiation of encapsulated GMSCs. Histological and immunohistochemical/fluorescence staining for protein markers specific for myogenic tissue confirmed muscle regeneration in subcutaneous transplantation in our in vivo animal model. GMSCs showed significantly greater capacity for myogenic regeneration in comparison to hBMMSCs (p < 0.05). Altogether, our findings confirmed that GMSCs encapsulated in RGD-modified alginate hydrogel with multiple growth factor delivery capacity is a promising candidate for muscle tissue engineering.







Similar content being viewed by others
References
Abou-Khalil, R., F. Yang, S. Lieu, A. Julien, J. Perry, C. Pereira, F. Relaix, T. Miclau, R. Marcucio, and C. Colnot. Role of muscle stem cells during skeletal regeneration. Stem Cells. 33:1501–1511, 2015.
Adnot, S., M. Desmier, N. Ferry, J. Hanoune, and T. Sevenet. Forskolin (a powerful inhibitor of human platelet aggregation). Biochem. Pharmacol. 31:4071–4074, 1982.
Ansari, S., A. Moshaverinia, S. H. Pi, A. Han, A. I. Abdelhamid, and H. H. Zadeh. Functionalization of scaffolds with chimeric anti-BMP-2 monoclonal antibodies for osseous regeneration. Biomaterials. 34:10191–10198, 2013.
Beier, J. P., F. F. Bitto, C. Lange, D. Klumpp, A. Arkudas, O. Bleiziffer, et al. Myogenic differentiation of mesenchymal stem cells co-cultured with primary myoblasts. Cell. Biol. Int. 35:397–406, 2011.
Boontheekula, T., H. J. Kongc, and D. J. Mooney. Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution. Biomaterials. 26:2455–2465, 2005.
Borselli, C., C. A. Cezar, D. Shvartsman, H. H. Vandenburgh, and D. J. Mooney. The role of multifunctional delivery scaffold in the ability of cultured myoblasts to promote muscle regeneration. Biomaterials. 32:8905–8914, 2011.
Borselli, C., H. Storrie, F. Benesch-Lee, D. Shvartsman, C. Cezar, J. W. Lichtman, H. H. Vandenburgh, and D. J. Mooney. Functional muscle regeneration with combined delivery of angiogenesis and myogenesis factors. Proc. Natl. Acad. Sci. USA 107:3287–3292, 2010.
Bouhadir, K. H., K. Y. Lee, E. Alsberg, K. L. Damm, K. W. Anderson, and D. J. Mooney. Degradation of partially oxidized alginate and its potential application for tissue engineering. Biotechnol. Prog. 17:945–950, 2001.
Bristow, M. R., R. Ginsburg, A. Strosberg, W. Montgomery, and W. Minobe. Pharmacology and inotropic potential of for- skolin in the human heart. J. Clin. Invest. 74:212–223, 1984.
Cantu, D. A., P. Hematti, and W. J. Kao. Cell encapsulating biomaterial regulates mesenchymal stromal/stem cell differentiation and macrophage immuno- phenotype. Stem. Cell. Transl. Med. 1:740–749, 2012.
Chen, F. M., J. Zhang, M. Zhang, Y. An, F. Chen, and Z. F. Wu. A review on endogenous regenerative technology in periodontal regenerative medicine. Biomaterials. 31:7892–7927, 2010.
Dezawa, M., H. Ishikawa, Y. Itokazu, T. Yoshihara, M. Hoshino, S. Takeda, et al. Bone marrow stromal cells generate muscle cells and repair muscle degeneration. Science. 309:314–317, 2005.
Engler, A. J., S. Sen, H. L. Sweeney, and D. E. Discher. Matrix elasticity directs stem cell lineage specification. Cell. 126:677–689, 2006.
Evangelista, M. B., S. X. Hsiong, R. Fernandes, P. Sampaio, H. Kong, C. C. Barrias, et al. Upregulation of bone cell differentiation through immobilization within a synthetic extracellular matrix. Biomaterials. 28:3644–3655, 2007.
Goncalves, M. A., J. Swildens, M. Holkers, A. Narain, G. P. van Nierop, M. J. van de Watering, et al. Genetic complementation of human muscle cells via directed stem cell fusion. Mol. Ther. 16:741–748, 2008.
Gonzalez, A., E. Aranda, D. Mezzano, and J. Garrido. Effects of diterpene forskolin on the release reaction and protein phosphorylation of human platelets. Cell. Biochem. Funct. 1:179–185, 1983.
Gronthos, S., M. Mankani, J. Brahim, P. G. Robey, and S. Shi. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc. Natl. Acad. Sci. USA 97:13625–13630, 2000.
Huebsch, N., P. R. Arany, A. S. Mao, D. Shvartsman, O. A. Ali, S. A. Bencherif, J. Rivera-Feliciano, and D. J. Mooney. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat. Mater. 9:518–526, 2010.
Iwata, T., M. Yamato, Z. Zhang, S. Mukobata, K. Washio, T. Ando, et al. Validation of human periodontal ligament-derived cells as a reliable source for cytotherapeutic use. J. Clin. Periodontol. 37:1088–1099, 2010.
Koning, M., M. C. Harmsen, M. J. van Luyn, and P. M. Werker. Current opportunities and challenges in skeletal muscle tissue engineering. J. Tissue Eng. Regen. Med. 3:407–415, 2009.
Krauss, R. S., F. Cole, U. Gaio, G. Takaesu, W. Zhang, and J. S. Kang. Close encounters: regulation of vertebrate skeletal myogenesis by cell-cell contact. J. Cell Sci. 118:2355–2362, 2005.
Kuang, S., M. A. Gillespie, and M. A. Rudnicki. Niche regulation of muscle satellite cell self-renewal and differentiation. Cell Stem Cell. 2:22–31, 2008.
Litosch, I., T. H. Hudson, I. Mills, S. Y. Li, and J. N. Fain. Forskolin as an activator of cyclic AMP accumulation and lipolysis in rat adipocytes. Mol. Pharmacol. 22:109–115, 1982.
Lu, H. H., J. M. Vo, H. S. Chin, J. Lin, M. Cozin, R. Tsay, et al. Controlled delivery of platelet-rich plasma growth factors for bone formation. J. Biomed. Mater. Res. A. 86:1128–1136, 2008.
Lubeck, D. P. The costs of musculoskeletal disease: health needs assessment and health economics. Best. Pract. Res. Clin. Rheumatol. 17:529–539, 2003.
Markusen, J. F., C. Mason, D. A. Hull, M. A. Town, A. B. Tabor, M. Clements, C. H. Boshoff, and P. Dunnill. Behavior of adult human mesenchymal stem cells entrapped in alginate-GRGDY beads. Tissue Eng. Part A. 12:821–830, 2006.
Mikos, A. G., S. W. Herring, P. Ochareon, J. Elisseeff, H. H. Lu, R. Kandel, et al. Engineering complex tissues. Tissue Eng. 12:3307–3339, 2006.
Miura, M., S. Gronthos, M. Zhao, B. Lu, L. W. Fisher, P. G. Robey, et al. SHED: stem cells from human exfoliated deciduous teeth. Proc. Natl. Acad. Sci. USA 100:5807–5812, 2003.
Morosetti, R., M. Mirabella, C. Gliubizzi, A. Broccolini, L. De Angelis, E. Tagliafico, et al. MyoD expression restores defective myogenic differentiation of human mesoangioblasts from inclusion-body myositis muscle. Proc. Natl. Acad. Sci. USA 103:16995–17000, 2006.
Moshaverinia, A., S. Ansari, C. Chen, X. Xu, K. Akiyama, M. L. Snead, et al. Co-encapsulation of anti-BMP2 monoclonal antibody and mesenchymal stem cells in alginate microspheres for bone tissue engineering. Biomaterials. 34:6572–6579, 2013.
Moshaverinia, A., C. Chen, K. Akiyama, S. Ansari, X. Xu, W. W. Chee, et al. Alginate hydrogel as a promising scaffold for dental-derived stem cells: an in vitro study. J. Mater. Sci: Mater. Med. 23:3041–3051, 2012.
Moshaverinia, A., C. Chen, K. Akiyama, X. Xu, W. W. Chee, S. R. Schricker, and S. Shi. Encapsulated dental-derived stem cells in an injectable and biodegradable scaffold for applications in bone tissue engineering. J. Biomed. Mater. Res. Part. A. 101:3285–3294, 2013.
Moshaverinia, A., C. Chen, X. Xu, K. Akiyama, S. Ansari, H. H. Zadeh, and S. Shi. Bone regeneration potential of stem cells derived from periodontal ligament or gingival tissue sources encapsulated in RGD-modified alginate scaffold. Tissue Eng. Part A. 20:611–621, 2013.
Moshaverinia, A., C. Chen, X. Xu, S. Ansari, H. H. Zadeh, S. R. Schricker, et al. Regulation of the stem cell-host immune system interplay using hydrogel coencapsulation system with an anti-inflammatory drug. Adv Funct Mater. 15:2296–2307, 2015.
Moshaverinia, A., X. Xu, C. Chen, S. Ansari, H. H. Zadeh, M. L. Snead, et al. Application of stem cells derived from the periodontal ligament or gingival tissue sources for tendon tissue regeneration. Biomaterials. 35:2642–2650, 2014.
Murphy, W. L., T. C. McDevitt, and A. J. Engler. Materials as stem cell regulators. Nat. Mater. 13:547–557, 2014.
Pirskanen, A., J. C. Kiefer, and S. D. Hauschka. IGFs, insulin, Shh, bFGF, and TGF-beta1 interact synergistically to pro- mote somite myogenesis in vitro. Dev. Biol. 224:189–203, 2000.
Puri, P. L., S. Iezzi, P. Stiegler, T. T. Chen, R. L. Schiltz, G. E. Muscat, A. Giordano, L. Kedes, J. Y. Wang, and V. Sartorelli. Class I histone deacetylases sequentially interact with MyoD and pRb during skeletal myogenesis. Mol. Cell. 8:885–897, 2001.
Re’em, T., O. Tsur-Gang, and S. Cohen. The effect of immobilized RGD peptide in macroporous alginate scaffolds on TGFb1-induced chondrogenesis of human mesenchymal stem cells. Biomaterials. 31:6746–6755, 2010.
Rowley, J. A., G. Madlambayan, and D. J. Mooney. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials. 20:45–51, 1999.
Sachlos, E., and J. T. Czernuszka. Making tissue engineering scaffolds work. Review on the application of solid freeform fabrication technology to the production of tissue engineering scaffold. Euro. Cell. Mater. 5:29–40, 2003.
Salani, S., C. Donadoni, F. Rizzo, N. Bresolin, G. P. Comi, and S. Corti. Generation of skeletal muscle cells from embryonic and induced pluripotent stem cells as an in vitro model and for therapy of muscular dystrophies. J. Cell Mol. Med. 16:1353–1364, 2012.
Seamon, K. B., W. Padgett, and J. W. Daly. Forskolin unique diterpene activator of adenylate cyclase in membranes and in intact cells. Proc. Natl. Acad. Sci. USA 78:3363–3367, 1981.
Seed, J., and S. D. Hauschka. Clonal analysis of vertebrate myogenesis. VIII. Fibroblasts growth factor (FGF)-dependent and FGF-independent muscle colony types during chick wing development. Dev. Biol. 128:40–49, 1988.
Seo, B. M., M. Miura, S. Gronthos, P. M. Bartold, S. Batouli, J. Brahim, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet. 364:149–155, 2004.
Siebens, H. C. Musculoskeletal problems as comorbidities. Am. J. Phys. Med. Rehabil. 86:69–78, 2007.
Silva, A. K., M. Juenet, A. Meddahi-Pellé, and D. Letourneur. Polysaccharide-based strategies for heart tissue engineering. Carbohydr. Polym. 116:267–277, 2015.
Tseng, A. S., F. B. Engel, and M. T. Keating. The GSK 3 inhibitor BIO promotes proliferation in mammalian cardiomyocytes. Chem Biol. 13:957–963, 2006.
Tseng, B. S., P. Zhao, J. S. Pattison, S. E. Gordon, J. A. Granchelli, R. W. Madsen, et al. Regenerated mdx mouse skeletal muscle shows differential mRNA expression. J. Appl. Physiol. 93:537–545, 2002.
Wang, W., N. Ma, K. Kratz, X. Xu, Z. Li, T. Roch, et al. The influence of polymer scaffolds on cellular behaviour of bone marrow derived human mesenchymal stem cells. Clin. Hemorheol. Microcirc. 52:357–373, 2012.
Weintraub, H. The MyoD family and myogenesis: redundancy, networks, and thresholds. Cell. 75:1241–1244, 1993.
Wright, W. E., D. A. Sassoon, and V. K. Lin. Myogenin, a factor regulating myogenesis, has a domain homologous to MyoD. Cell. 56:607–617, 1989.
Xu, X., C. Chen, K. Akiyama, Y. Chai, A. D. Le, Z. Wang, and S. Shi. Gingivae contain neural-crest and mesoderm-derived mesenchymal stem cells. J. Dent. Res. 92:825–832, 2013.
Zhang, Q., S. Shi, Y. Liu, J. Uyanne, Y. Shi, S. Shi, et al. mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis. J. Immunol. 183:7787–7798, 2009.
Acknowledgments
This work was supported by grants from the National Institute of Dental, Craniofacial Research (K08DE023825 to A.M. and R01 DE017449 to S.S.). The authors declare no potential conflicts of interest with respect to the authorship and/or publication of this article.
Author information
Authors and Affiliations
Corresponding author
Additional information
Associate Editor Akhilesh K Gaharwar oversaw the review of this article.
Sahar Ansari and Chider Chen have contributed equally to this work.
Rights and permissions
About this article
Cite this article
Ansari, S., Chen, C., Xu, X. et al. Muscle Tissue Engineering Using Gingival Mesenchymal Stem Cells Encapsulated in Alginate Hydrogels Containing Multiple Growth Factors. Ann Biomed Eng 44, 1908–1920 (2016). https://doi.org/10.1007/s10439-016-1594-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10439-016-1594-6