Skip to main content
Log in

Numerical Simulation of a Biventricular Assist Device with Fixed Right Outflow Cannula Banding During Pulmonary Hypertension

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

As a left ventricular assist device is designed to pump against the systemic vascular resistance (SVR), pulmonary congestion may occur when using such device for right ventricular support. The present study evaluates the efficacy of using a fixed right outflow banding in patients receiving biventricular assist device support under various circulatory conditions, including variations in the SVR, pulmonary vascular resistance (PVR), total blood volume (BV), as well as ventricular contractility. Effect of speed variation on the hemodynamics was also evaluated at varying degrees of PVR. Pulmonary congestion was observed at high SVR and BV. A reduction in right ventricular assist device (RVAD) speed was required to restore pulmonary pressures. Meanwhile, at a high PVR, the risk of ventricular suction was prevalent during systemic hypotension due to low SVR and BV. This could be compensated by increasing RVAD speed. Isolated right heart recovery may aggravate pulmonary congestion, as the failing left ventricle cannot accommodate the resultant increase in the right-sided flow. Compared to partial assistance, the sensitivity of the hemodynamics to changes in VAD speed increased during full assistance. In conclusion, our results demonstrated that the introduction of a banding graft with a 5 mm diameter guaranteed sufficient reserve of the pump speed spectrum for the regulation of acceptable hemodynamics over different clinical scenarios, except under critical conditions where drug administration or volume management is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Aissaoui, N., J. Borgermann, J. Gummert, and M. Morshuis. HeartWare continuous-flow ventricular assist device thrombosis: The Bad Oeynhausen experience. J. Thorac. Cardiovasc. Surg. 143:E37–E39, 2012.

    Article  PubMed  Google Scholar 

  2. Atluri, P., A. S. Fairman, J. W. MacArthur, A. B. Goldstone, J. E. Cohen, J. L. Howard, C. M. Zalewski, Y. Shudo, and Y. J. Woo. Continuous flow left ventricular assist device implant significantly improves pulmonary hypertension, right ventricular contractility, and tricuspid valve competence. J. Card. Surg. 28:770–775, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Drakos, S. G., L. Janicki, B. D. Horne, A. G. Kfoury, B. B. Reid, S. Clayson, K. Horton, F. Haddad, D. Y. Li, D. G. Renlund, and P. W. Fisher. Risk factors predictive of right ventricular failure after left ventricular assist device implantation. Am. J. Cardiol. 105:1030–1035, 2010.

    Article  PubMed  Google Scholar 

  4. Gandhi, S. K., C. B. Huddleston, D. T. Balzer, D. J. Epstein, T. A. Boschert, and C. E. Canter. Biventricular assist devices as a bridge to heart transplantation in small children. Circulation 118:S89–S93, 2008.

    Article  PubMed  Google Scholar 

  5. Gregory, S. D., E. Schummy, M. Pearcy, J. P. Pauls, G. Tansley, J. F. Fraser, and D. Timms. A compliant, banded outflow cannula for decreased afterload sensitivity of rotary right ventricular assist devices. Artif. Organs 2014. doi:10.1111/aor.12338.

    Google Scholar 

  6. Gregory, S. D., D. Timms, N. Gaddum, D. G. Mason, and J. F. Fraser. Biventricular assist devices: a technical review. Ann. Biomed. Eng. 39:2313–2328, 2011.

    Article  PubMed  Google Scholar 

  7. Haddad, H., W. Elabbassi, S. Moustafa, R. Davies, T. Mesana, P. Hendry, R. Masters, and T. Mussivand. Left ventricular assist devices as bridge to heart transplantation in congestive heart failure with pulmonary hypertension. ASAIO. J. 51:456–460, 2005.

    Article  PubMed  Google Scholar 

  8. Hetzer, R., T. Krabatsch, A. Stepanenko, E. Hennig, and E. V. Potapov. Long-term biventricular support with the heartware implantable continuous flow pump. J. Heart. Lung Transplant. 29:822–824, 2010.

    Article  PubMed  Google Scholar 

  9. Jett, G. K. Physiology of nonpulsatile circulation: acute versus chronic support. ASAIO J. 45:119–122, 1999.

    Article  CAS  PubMed  Google Scholar 

  10. Klotz, S., Y. Naka, M. C. Oz, and D. Burkhoff. Biventricular assist device-induced right ventricular reverse structural and functional remodeling. J. Heart. Lung Transpl. 24:1195–1201, 2005.

    Article  Google Scholar 

  11. Konstam, M. A., S. R. Cohen, D. N. Salem, T. P. Conlon, J. M. Isner, D. Das, M. R. Zile, H. J. Levine, and P. C. Kahn. Comparison of left and right ventricular end-systolic pressure-volume relations in congestive heart-failure. J. Am. Coll. Cardiol. 5:1326–1334, 1985.

    Article  CAS  PubMed  Google Scholar 

  12. Krabatsch, T., E. Hennig, A. Stepanenko, M. Schweiger, M. Kukucka, M. Huebler, E. Potapov, and R. Hetzer. Evaluation of the HeartWare HVAD centrifugal pump for right ventricular assistance in an in vitro model. ASAIO J. 57:183–187, 2011.

    Article  PubMed  Google Scholar 

  13. Krabatsch, T., E. Potapov, A. Stepanenko, M. Schweiger, M. Kukucka, M. Huebler, E. Hennig, and R. Hetzer. Biventricular circulatory support with two miniaturized implantable assist devices. Circulation 124:S179–S186, 2011.

    Article  PubMed  Google Scholar 

  14. Lim, E., S. Dokos, S. L. Cloherty, R. F. Salamonsen, D. G. Mason, J. A. Reizes, and N. H. Lovell. Parameter-optimized model of cardiovascular-rotary blood pump interactions. IEEE Trans. Biomed. Eng. 57:254–266, 2010.

    Article  PubMed  Google Scholar 

  15. Lim, E., S. Dokos, R. F. Salamonsen, F. L. Rosenfeldt, P. J. Ayre, and N. H. Lovell. Numerical optimization studies of cardiovascular-rotary blood pump interaction. Artif. Organs 36:E110–E124, 2012.

    Article  PubMed  Google Scholar 

  16. Loforte, A., A. Montalto, P. L. DellaMonica, C. Contento, and F. Musumeci. Biventricular support with the HeartWare implantable continuous flow pump an additional contribution. J. Heart. Lung Transpl. 29:1443–1444, 2010.

    Article  Google Scholar 

  17. Maeder, M. T., A. Leet, A. Ross, D. Esmore, and D. M. Kaye. Changes in right ventricular function during continuous-flow left ventricular assist device support. J. Heart. Lung. Transplant. 28:360–366, 2009.

    Article  PubMed  Google Scholar 

  18. Mikus, E., A. Stepanenko, T. Krabatsch, A. Loforte, M. Dandel, H. B. Lehmkuhl, R. Hetzer, and E. V. Potapov. Reversibility of fixed pulmonary hypertension in left ventricular assist device support recipients. Eur. J. Cardiothorac. Surg. 40:971–977, 2011.

    PubMed  Google Scholar 

  19. Ochiai, Y., K. Fukamachi, M. K. Banbury, J. L. Navia, M. L. Yeager, K. J. Hoercher, M. Takagaki, K. Doi, and N. G. Smedira. Preoperative risk factors for right ventricular failure after left ventricular assist device insertion. Circulation 104:440–441, 2001.

    Google Scholar 

  20. Potapov, E. V., A. Loforte, Y. Weng, M. Jurmann, M. Pasic, T. Drews, M. Loebe, E. Hennig, T. Krabatsch, A. Koster, H. B. Lehmkuhl, and R. Hetzer. Experience with over 1000 implanted ventricular assist devices. J. Card. Surg. 23:185–194, 2008.

    Article  PubMed  Google Scholar 

  21. Punnoose, L., D. Burkhoff, S. Rich, and E. M. Horn. Right ventricular assist device in end-stage pulmonary arterial hypertension: insights from a computational model of the cardiovascular system. Prog. Cardiovasc. Dis. 55:234–243, 2012.

    Article  PubMed  Google Scholar 

  22. Radovancevic, B., I. D. Gregoric, D. Tamez, B. Vrtovec, E. Tuzun, H. K. Chee, S. Moore, R. K. Jarvik, and O. H. Frazier. Biventricular support with the Jarvik 2000 axial flow pump: a feasibility study. ASAIO J. 49:604–607, 2003.

    Article  PubMed  Google Scholar 

  23. Saeed, D., Y. Ootaki, C. Ootaki, M. Akiyama, T. Horai, J. Catanese, H. Fumoto, R. Dessoffy, A. L. Massiello, D. J. Horvath, Q. Zhou, J. F. Chen, S. Benefit, L. A. Golding, and K. Fukamachi. Acute in vivo evaluation of an implantable continuous flow biventricular assist system. ASAIO J. 54:20–24, 2008.

    Article  PubMed  Google Scholar 

  24. Saito, S., T. Sakaguchi, and Y. Sawa. Clinical report of long-term support with dual Jarvik 2000 biventricular assist device. J. Heart. Lung Transpl. 30:845–847, 2011.

    Article  Google Scholar 

  25. Schmitto, J. D., D. Burkhoff, M. Avsar, O. Fey, P. Ziehme, G. Buechler, A. Haverich, and M. Strueber. Two axial-flow synergy micro-pumps as a biventricular assist device in an ovine animal model. J. Heart. Lung Transpl. 31:1223–1229, 2012.

    Article  Google Scholar 

  26. Slaughter, M. S., F. D. Pagani, J. G. Rogers, L. W. Miller, B. Sun, S. D. Russell, R. C. Starling, L. W. Chen, A. J. Boyle, S. Chillcott, R. M. Adamson, M. S. Blood, M. T. Camacho, K. A. Idrissi, M. Petty, M. Sobieski, S. Wright, T. J. Myers, D. J. Farrar, and H. I. I. Clinical. Clinical management of continuous-flow left ventricular assist devices in advanced heart failure. J. Heart. Lung Transpl. 29:S1–S39, 2010.

    Article  Google Scholar 

  27. Stefanidis, C., G. Callebaut, W. Ngatchou, A. S. E. Ramadan, M. Antoine, D. de Canniere, and J. L. Jansens. The role of biventricular assistance in primary graft failure after heart transplantation. Hell. J. Cardiol. 53:160–162, 2012.

    Google Scholar 

  28. Stevens, M. C., S. D. Gregory, F. Nestler, B. Thomson, J. Choudhary, B. Garlick, J. P. Pauls, J. F. Fraser, and D. Timms. In vitro and in vivo characterization of three different modes of pump operation when using a left ventricular assist device as a right ventricular assist device. Artif. Organs 2014. doi:10.1111/aor.12289.

    Google Scholar 

  29. Timms, D., E. Gude, N. Gaddum, E. Lim, N. Greatrex, K. Wong, U. Steinseifer, N. Lovell, J. Fraser, and A. Fiane. Assessment of right pump outflow banding and speed changes on pulmonary hemodynamics during biventricular support with two rotary left ventricular assist devices. Artif. Organs 3(5):807–813, 2011.

    Article  Google Scholar 

  30. Triep, M., C. Brucker, W. Kerkhoffs, O. Schumacher, and O. Marseille. Investigation of the washout effect in a magnetically driven axial blood pump. Artif. Organs 32:778–784, 2008.

    Article  PubMed  Google Scholar 

  31. Tsukui, H., J. J. Teuteberg, S. Murali, D. M. McNamara, J. R. Buchanan, S. Winowich, E. Stanford, M. A. Mathier, L. M. Cadaret, and R. L. Kormos. Biventricular assist device utilization for patients with morbid congestive heart failure—a justifiable strategy. Circulation 112:I65–I72, 2005.

    PubMed  Google Scholar 

  32. Voelkel, N. F., R. A. Quaife, L. A. Leinwand, R. J. Barst, M. D. McGoon, D. R. Meldrum, J. Dupuis, C. S. Long, L. J. Rubin, F. W. Smart, Y. J. Suzuki, M. Gladwin, E. M. Denholm, and D. B. Gail. Right ventricular function and failure—report of a National Heart, lung, and Blood Institute working group on cellular and molecular mechanisms of right heart failure. Circulation 114:1883–1891, 2006.

    Article  PubMed  Google Scholar 

  33. Woodard, J. C., D. J. Farrar, E. Chow, W. P. Santamore, D. Burkhoff, and J. D. Hill. Computer model of ventricular interaction during left ventricular circulatory support. ASAIO Trans. 35:439–441, 1989.

    Article  CAS  PubMed  Google Scholar 

  34. Zimpfer, D., P. Zrunek, W. Roethy, M. Czerny, H. Schima, L. Huber, M. Grimm, A. Rajek, E. Wolner, and G. Wieselthaler. Left ventricular assist devices decrease fixed pulmonary hypertension in cardiac transplant candidates. J. Thorac. Cardiovasc. Surg. 133:689–695, 2007.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

The authors thank the Ministry of Higher Education of Malaysia (UM.C/HIR/MOHE/ENG/50) and the University of Malaya Research Grant (RP028-14HTM) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Lim.

Additional information

Associate Editor Estefanía Peña oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadeem, K., Ng, B.C., Lim, E. et al. Numerical Simulation of a Biventricular Assist Device with Fixed Right Outflow Cannula Banding During Pulmonary Hypertension. Ann Biomed Eng 44, 1008–1018 (2016). https://doi.org/10.1007/s10439-015-1388-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1388-2

Keywords

Navigation