Skip to main content

Advertisement

Log in

A Review of the Role of the Partial Pressure of Carbon Dioxide in Mechanically Loaded Tissues: The Canary in the Cage Singing in Tune with the Pressure Ulcer Mantra

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Pressure ulcers (PUs) can occur in any situations where people are subjected to non-uniform distribution of pressure over a prolonged period. They can have devastating effects on the patients’ well-being and in extreme conditions can prove fatal. In addition to traditional wisdom implicating mechanically induced ischaemia, there is strong evidence that other mechanisms play a role in the cascade of events which can initiate the PU damage process at the cellular level. Some of these refer to a metabolic imbalance with compromised delivery of nutrients and accumulation of waste products in the local environment of the cells. The approach of much research has focused on the measure of oxygen in compressed tissues as a means of predicting early damage. However, the present review adopting a hierarchical approach, using length scales ranging from cells through to human models, has revealed compelling evidence which highlights the importance of carbon dioxide levels and associated concentration of other metabolites, such as lactate and purines. The temporal profiles of these metabolites have been monitored in the various models subjected to periods of mechanical-induced loading where the localized cells have converted to anaerobic metabolism. They reveal threshold levels of carbon dioxide which might be indicative of early tissue damage during both mechanical-induced ischaemia and subsequent reperfusion and an appropriate sensor could be used in a similar manner to the long-standing “canary in a cage” method to detect toxic gasses in enclosed mines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Andreozzi, G. M., et al. Transcutaneous PCO2 level as an index of tissue resistance to ischemia. Angiology 46(12):1097–1102, 1995.

    Article  CAS  PubMed  Google Scholar 

  2. Arthur, P. G., J. J. Giles, and C. M. Wakeford. Protein synthesis during oxygen conformance and severe hypoxia in the mouse muscle cell line C2C12. Biochim. Biophys. Acta 1475(1):83–89, 2000.

    Article  CAS  PubMed  Google Scholar 

  3. Bader, D. L. The recovery characteristics of soft tissues following repeated loading. J. Rehabil. Res. Dev. 27(2):141–150, 1990.

    Article  CAS  PubMed  Google Scholar 

  4. Bader, D., and S. White. Monitoring soft tissue viability during orthopaedic surgical procedures. Age Ageing 27:217–221, 1998.

    Article  CAS  PubMed  Google Scholar 

  5. Bader, D. L., et al. Biochemical status of soft tissue subjected to substained pressure. In: Pressure Ulcer research Current and future Perspectives, edited by D. L. Bader, and et al. Berling: Springer, 2005, pp. 109–128.

    Chapter  Google Scholar 

  6. Blaisdell, F. W. The pathophysiology of skeletal muscle ischemia and the reperfusion syndrome: a review. Cardiovasc. Surg. 10(6):620–630, 2002.

    Article  PubMed  Google Scholar 

  7. Bogie, K. M., I. Nuseibeh, and D. L. Bader. Early progressive changes in tissue viability in the seated spinal cord injured subject. Paraplegia 33(3):141–147, 1995.

    Article  CAS  PubMed  Google Scholar 

  8. Bouten, C. V., et al. The etiology of pressure ulcers: skin deep or muscle bound? Arch. Phys. Med. Rehabil. 84(4):616–619, 2003.

    Article  PubMed  Google Scholar 

  9. Breton, S. The cellular physiology of carbonic anhydrases. JOP. J. Pancreas (online) 2(4 Suppl):159–164, 2001.

    CAS  Google Scholar 

  10. Brooks, G. A. What does glycolysis make and why is it important? J. Appl. Physiol. 108(6):1450–1451, 2010.

    Article  CAS  PubMed  Google Scholar 

  11. Campbell, E. J., C. Dickenson, and J. Slater. Clinical Physiology (4th ed.). Oxford: Blackwell, 1974.

    Google Scholar 

  12. Carbone, L. D., et al. Morbidity following lower extremity fractures in men with spinal cord injury. Osteoporos. Int. 24(8):2261–2267, 2013.

    Article  CAS  PubMed  Google Scholar 

  13. Ceelen, K. K., et al. Compression-induced damage and internal tissue strains are related. J. Biomech. 41(16):3399–3404, 2008.

    Article  CAS  PubMed  Google Scholar 

  14. Chai, C. Y., and D. L. Bader. The physiological response of skin tissues to alternating support pressures in able-bodied subjects. J. Mech. Behav. Biomed. Mater. 28:427–435, 2013.

    Article  CAS  PubMed  Google Scholar 

  15. Crespo-Ruiz, B., et al. Physical activity and transcutaneous oxygen pressure in men with spinal cord injury. J. Rehabil. Res. Dev. 49(6):913–924, 2012.

    Article  PubMed  Google Scholar 

  16. Dill, D. B., J. H. Talbott, and W. V. Consolanzio. Blood as physicochemical system. J. Biol. Chem. 118:649–666, 1937.

    CAS  Google Scholar 

  17. Foregger, R. Joseph Black and the identification of carbon dioxide. Anesthesiology 18(2):257–264, 1957.

    Article  CAS  PubMed  Google Scholar 

  18. Fox, K. A., J. E. Saffitz, and P. B. Corr. Pathophysiology of myocardial reperfusion. Cardiol. Clin. 5(1):31–48, 1987.

    CAS  PubMed  Google Scholar 

  19. Gawlitta, D., et al. The relative contributions of compression and hypoxia to development of muscle tissue damage: an in vitro study. Ann. Biomed. Eng. 35(2):273–284, 2007.

    Article  PubMed  Google Scholar 

  20. Gawlitta, D., et al. Temporal differences in the influence of ischemic factors and deformation on the metabolism of engineered skeletal muscle. J. Appl. Physiol. (1985) 103(2):464–473, 2007.

    Article  CAS  Google Scholar 

  21. Gawlitta, D., et al. The influence of serum-free culture conditions on skeletal muscle differentiation in a tissue-engineered model. Tissue Eng. Part A 14(1):161–171, 2008.

    Article  CAS  PubMed  Google Scholar 

  22. Gjovaag, T., et al. Assessment of aerobic capacity and walking economy of unilateral transfemoral amputees. Prosthet. Orthot. Int. 38(2):140–147, 2014.

    Article  PubMed  Google Scholar 

  23. Granger, D. N., and R. J. Korthuis. Physiologic mechanisms of postischemic tissue injury. Annu. Rev. Physiol. 57:311–332, 1995.

    Article  CAS  PubMed  Google Scholar 

  24. Guideline on Prevention and Treatment for Pressure Ulcers: Clinical Practice Guideline. European Pressure Advisory Panel/National Pressure Advisory Panel, Quick reference guide, 2014.

  25. Hotter, G., L. Palacios, and A. Sola. Low O2 and high CO2 in LLC-PK1 cells culture mimics renal ischemia-induced apoptosis. Lab. Investig. 84(2):213–220, 2004.

    Article  PubMed  Google Scholar 

  26. Husain, T. An experimental study of some pressure effects on tissues, with reference to the bed-sore problem. J. Pathol. Bacteriol. 66(2):347–358, 1953.

    Article  CAS  PubMed  Google Scholar 

  27. Hyman, W. A., and R. S. Artigue. Oxygen and lactic acid transport in skeletal muscle: effect of reactive hyperemia. Ann. Biomed. Eng. 5(3):260–272, 1977.

    Article  CAS  PubMed  Google Scholar 

  28. Iizaka, S., et al. The impact of malnutrition and nutrition-related factors on the development and severity of pressure ulcers in older patients receiving home care. Clin. Nutr. 29(1):47–53, 2010.

    Article  PubMed  Google Scholar 

  29. Jensen, F. B. Red blood cell pH, the Bohr effect, and other oxygenation-linked phenomena in blood O2 and CO2 transport. Acta Physiol. Scand. 182(3):215–227, 2004.

    Article  CAS  PubMed  Google Scholar 

  30. Jobsis, F. F. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198(4323):1264–1267, 1977.

    Article  CAS  PubMed  Google Scholar 

  31. Johnson, B. A., and M. H. Weil. Redefining ischemia due to circulatory failure as dual defects of oxygen deficits and of carbon dioxide excesses. Crit. Care Med. 19(11):1432–1438, 1991.

    Article  CAS  PubMed  Google Scholar 

  32. Katis, I. N., et al. Paper-based colorimetric enzyme linked immunosorbent assay fabricated by laser induced forward transfer. Biomicrofluidics 8:036502, 2014.

    Article  PubMed  Google Scholar 

  33. Knight, S. L., et al. Establishing predictive indicators for the status of loaded soft tissues. J. Appl. Physiol. 90(6):2231–2237, 2001.

    CAS  PubMed  Google Scholar 

  34. Kosiak, M. Etiology of decubitus ulcers. Arch. Phys. Med. Rehabil. 42:19–29, 1961.

    CAS  PubMed  Google Scholar 

  35. Krouskop, T. A. A synthesis of the factors that contribute to pressure sore formation. Med. Hypotheses 11(2):255–267, 1983.

    Article  CAS  PubMed  Google Scholar 

  36. Kubota, K., et al. Evaluation of the intratumoral vasculature of hepatocellular carcinoma by power doppler sonography: advantages and disadvantages versus conventional color doppler sonography. Abdom. Imaging 25(2):172–178, 2000.

    Article  CAS  PubMed  Google Scholar 

  37. Kvarstein, G., P. Mirtaheri, and T. I. Tønnessen. Detection of ischemia by PCO2 before adenosine triphosphate declines in skeletal muscle. Crit. Care Med. 32(1):232–237, 2004.

    Article  CAS  PubMed  Google Scholar 

  38. Kvarstein, G., et al. Tissue carbon dioxide tension: a putative specific indicator of ischemia in porcine latissimus dorsi flaps. Plast. Reconstr. Surg. 112(7):1825–1831, 2004.

    Article  Google Scholar 

  39. Lefer, A. M., J. C. Daw, and R. M. Berne. Cardiac and skeletal muscle metabolic energy stores in hemorrhagic shock. Am. J. Physiol. 216(3):483–486, 1969.

    CAS  PubMed  Google Scholar 

  40. Liao, F., D. W. Garrison, and Y. K. Jan. Relationship between nonlinear properties of sacral skin blood flow oscillations and vasodilatory function in people at risk for pressure ulcers. Microvasc. Res. 80(1):44–53, 2010.

    Article  PubMed  Google Scholar 

  41. Lippmann, F. Metabolic generation and utilization of phosphate bond energy. Adv. Enxymol. 1:99–162, 1941.

    Google Scholar 

  42. Loerakker, S., et al. Temporal effects of mechanical loading on deformation-induced damage in skeletal muscle tissue. Ann. Biomed. Eng. 38(8):2577–2587, 2010.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Loerakker, S., et al. Ischemia-reperfusion injury in rat skeletal muscle assessed with T2-weighted and dynamic contrast-enhanced MRI. Magn. Reson. Med. 66(2):528–537, 2011.

    Article  CAS  PubMed  Google Scholar 

  44. Lyder, C. H. Pressure ulcer prevention and management. JAMA 289(2):223–226, 2003.

    Article  PubMed  Google Scholar 

  45. Mayrovitz, H. N., and N. Sims. Effects of different cyclic pressurization and relief patterns on heel skin blood perfusion. Adv. Skin Wound Care. 15(4):158–164, 2002.

    Article  PubMed  Google Scholar 

  46. Mayrovitz, H. N., N. Sims, and M. C. Taylor. Sacral skin blood perfusion: a factor in pressure ulcers? Ostomy Wound Manage 48(6):34–38, 40–42, 2002.

  47. Maziere, S., P. Couturier, and G. Gavazzi. Impact of functional status on the onset of nosocomial infections in an acute care for elders unit. J. Nutr. Health Aging 17(10):903–907, 2013.

    Article  CAS  PubMed  Google Scholar 

  48. McCord, J. M. Oxygen-derived free radicals in postischemic tissue injury. N. Engl. J. Med. 312(3):159–163, 1985.

    Article  CAS  PubMed  Google Scholar 

  49. Miller, G. E., and J. L. Seale. Lymphatic clearance during compressive loading. Lymphology 14:161–166, 1981.

    CAS  PubMed  Google Scholar 

  50. Mirtaheri, P. A Novel Biomedical Sensor for Early Detection of Organ Ischemia. PhD Thesis, Department of Physics & Rikshospitalet University Hospital, University of Oslo, 2005.

  51. Nelson, T. R., and D. H. Pretorius. The Doppler signal: where does it come from and what does it mean? AJR Am. J. Roentgenol. 151(3):439–447, 1988.

    Article  CAS  PubMed  Google Scholar 

  52. Nilsson, G. E., T. Tenland, and P. A. Oberg. Evaluation of a laser Doppler flowmeter for measurement of tissue blood flow. IEEE Trans. Biomed. Eng. 27(10):597–604, 1980.

    Article  CAS  PubMed  Google Scholar 

  53. Nunn, J. F. Measurement of blood carbon dioxide tension. Proc. R. Soc. Med. 53:180–182, 1960.

    PubMed Central  CAS  PubMed  Google Scholar 

  54. Oomens, C. W. J., and D. L. Bader. Tissue engineered models: a valuable tool in pressure ulcer research. Bioeng. Res. Chronic Wounds 1:249–262, 2009.

    Article  Google Scholar 

  55. Rithalia, S. V. Evaluation of alternating pressure air mattresses: one laboratory-based strategy. J. Tissue Viability 14(2):51–58, 2004.

    Article  PubMed  Google Scholar 

  56. Rithalia, S. V., and M. Gonsalkorale. Quantification of pressure relief using interface pressure and tissue perfusion in alternating pressure air mattresses. Arch. Phys. Med. Rehabil. 81(10):1364–1369, 2000.

    Article  CAS  PubMed  Google Scholar 

  57. Rochat, M. C., et al. Evaluation of skin viability in dogs, using transcutaneous carbon dioxide and sensor current monitoring. Am. J. Vet. Res. 54(3):476–480, 1993.

    CAS  PubMed  Google Scholar 

  58. Saleh, M., D. Anthony, and S. Parboteeah. The impact of pressure ulcer risk assessment on patient outcomes among hospitalised patients. J. Clin. Nurs. 18(13):1923–1929, 2009.

    Article  PubMed  Google Scholar 

  59. Salman, M., et al. Measurement of critical lower limb tissue hypoxia by coupling chemical and optical techniques. Clin. Sci. (Lond) 108(2):159–165, 2005.

    Article  CAS  Google Scholar 

  60. Scheeren, T. W., P. Schober, and L. A. Schwarte. Monitoring tissue oxygenation by near infrared spectroscopy (NIRS): background and current applications. J. Clin. Monit. Comput. 26(4):279–287, 2012.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Schlichtig, R., and S. A. Bowles. Distinguishing between aerobic and anaerobic appearance of dissolved CO2 in intestine during low flow. J. Appl. Physiol. 76(6):2443–2451, 1994.

    CAS  PubMed  Google Scholar 

  62. Schlichtig, R., N. Mehta, and T. J. Gayowski. Tissue-arterial PCO2 difference is a better marker of ischemia than intramural pH (pHi) or arterial pH-pHi difference. J. Crit. Care 11(2):51–56, 1996.

    Article  CAS  PubMed  Google Scholar 

  63. Sheppard, L. W., V. Vuksanović, P. V. McClintock, and A. Stefanovska. Oscillatory dynamics of vasoconstriction and vasodilation identified by time-localized phase coherence. Phys. Med. Biol. 56(12):3583–3601, 2011.

    Article  CAS  PubMed  Google Scholar 

  64. Soller, B. R., et al. Investigation of muscle pH as an indicator of liver pH and injury from hemorrhagic shock. J. Surg. Res. 114(2):195–201, 2003.

    Article  CAS  PubMed  Google Scholar 

  65. Stekelenburg, A., et al. Role of ischemia and deformation in the onset of compression-induced deep tissue injury: MRI-based studies in a rat model. J. Appl. Physiol. (1985) 102(5):2002–2011, 2007.

    Article  Google Scholar 

  66. Tonnessen, T. I. Biological basis for PCO2 as a detector of ischemia. Acta Anaesthesiol. Scand. 41(6):659–669, 1997.

    Article  CAS  PubMed  Google Scholar 

  67. Tønnessen, T. I. Are we able to interpret the different canary songs? Acta Anaesthesiol. Scand. 43:691–694, 1999.

    Article  Google Scholar 

  68. Ungerstedt, U. Microdialysis—principles and applications for studies in animals and man. J. Intern. Med. 230(4):365–373, 1991.

    Article  CAS  PubMed  Google Scholar 

  69. Waelgaard, L., et al. Tissue gas tensions and tissue metabolites for detection of organ hypoperfusion and ischemia. Acta Anaesthesiol. Scand. 56(2):200–209, 2012.

    Article  CAS  PubMed  Google Scholar 

  70. Walker, P. M. Ischemia/reperfusion injury in skeletal muscle. Ann. Vasc. Surg. 5(4):399–402, 1991.

    Article  CAS  PubMed  Google Scholar 

  71. Walubo, A., P. J. Smith, and P. I. Folb. Oxidative stress during antituberculous therapy in young and elderly patients. Biomed. Environ. Sci. 8(2):106–113, 1995.

    CAS  PubMed  Google Scholar 

  72. Watkins, D., and G. A. Holloway, Jr. An instrument to measure cutaneous blood flow using the Doppler shift of laser light. IEEE Trans. Biomed. Eng. 25(1):28–33, 1978.

    Article  CAS  PubMed  Google Scholar 

  73. Wiedemann, D., et al. Impact of cold ischemia on mitochondrial function in porcine hearts and blood vessels. Int. J. Mol. Sci. 14(11):22042–22051, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  74. Woodhouse, M., et al. Physiological response to soft tissue sites to periodic tilting as a prevention strategy for pressure ulcers. Clin. Biomech., 2015, in press.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan L. Bader.

Additional information

Associate Editor Amit Gefen oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirtaheri, P., Gjøvaag, T., Worsley, P.R. et al. A Review of the Role of the Partial Pressure of Carbon Dioxide in Mechanically Loaded Tissues: The Canary in the Cage Singing in Tune with the Pressure Ulcer Mantra. Ann Biomed Eng 43, 336–347 (2015). https://doi.org/10.1007/s10439-014-1233-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1233-z

Keywords

Navigation