Skip to main content
Log in

Ex Vivo Lymphatic Perfusion System for Independently Controlling Pressure Gradient and Transmural Pressure in Isolated Vessels

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In addition to external forces, collecting lymphatic vessels intrinsically contract to transport lymph from the extremities to the venous circulation. As a result, the lymphatic endothelium is routinely exposed to a wide range of dynamic mechanical forces, primarily fluid shear stress and circumferential stress, which have both been shown to affect lymphatic pumping activity. Although various ex vivo perfusion systems exist to study this innate pumping activity in response to mechanical stimuli, none are capable of independently controlling the two primary mechanical forces affecting lymphatic contractility: transaxial pressure gradient, \(\Delta P\), which governs fluid shear stress; and average transmural pressure, \(P_{\text {avg}}\), which governs circumferential stress. Hence, the authors describe a novel ex vivo lymphatic perfusion system (ELPS) capable of independently controlling these two outputs using a linear, explicit model predictive control (MPC) algorithm. The ELPS is capable of reproducing arbitrary waveforms within the frequency range observed in the lymphatics in vivo, including a time-varying \(\Delta P\) with a constant \(P_{\text {avg}}\), time-varying \(\Delta P\) and \(P_{\text {avg}}\), and a constant \(\Delta P\) with a time-varying \(P_{\text {avg}}\). In addition, due to its implementation of syringes to actuate the working fluid, a post-hoc method of estimating both the flow rate through the vessel and fluid wall shear stress over multiple, long (5 s) time windows is also described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

\(A_c\) :

Cross-sectional area of syringe plunger

\(\mathbf {C}\) :

Output matrix

\(D\) :

Diameter of vessel

\(\mathbf {e}\) :

Output error vector

\(\mathbf {G}\) :

State matrix

\(\mathbf {H}\) :

Input matrix

\(H_p\) :

Size of predictive time horizon

\(J\) :

Control Objective/cost function

\(\mathbf {K}\) :

Control gain matrix

\(\mathbf {L}\) :

Kalman gain matrix

\(n\) :

Size of state space

\(P_{1,2}\) :

Pressure on each end of cannula

\(P_{\text {avg}}\) :

Average transmural pressure

\(\Delta P\) :

Transaxial pressure gradient

\(Q\) :

Estimated flow rate

\(\mathbf {Q}\) :

Output error weighting matrix

\(\mathbf {R}\) :

Input weighting matrix

\(\Delta t\) :

Time-averaging window

\(T_s\) :

Sampling time

\(\mathbf {u}\) :

Input vector (voltages to servo drive)

\(\mathbf {U}\) :

Vector of input vectors

\(v_{\mathrm{avg}}\) :

Average velocity of both syringes

\(x\) :

Linear stage position

\(\mathbf {x}\) :

State vector

\(\mathbf {y}\) :

Output vector

\(\mathbf {Y}\) :

Vector of output vectors

\(z\) :

Z-transform variable

\(\delta \) :

Solenoid valve switching variable

\(\mu \) :

Dynamic viscosity

\(\tau _w\) :

Estimated wall shear stress

\(d\) :

User-defined/desired quantity

*:

Optimal quantity

~:

Estimated via observer

:

Mean over time window

References

  1. Bergh, N., M. Ekman, E. Ulfhammer, M. Andersson, L. Karlsson, and S. Jern. A new biomechanical perfusion system for ex vivo study of small biological intact vessels. Ann. Biomed. Eng. 33(12):1808–1818, 2005.

    Article  PubMed  Google Scholar 

  2. Bertram, C. D., C. Macaskill, and J. E. Moore. Simulation of a chain of collapsible contracting lymphangions with progressive valve closure. J. Biomech. Eng. 133(1):011008, 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Bohlen, H. G., W. Wang, A. A. Gashev, O. Y. Gasheva, and D. C. Zawieja. Phasic contractions of rat mesenteric lymphatics increase basal and phasic nitric oxide generation in vivo. Am. J. Physiol. Heart Circ. Physiol. 297(4):H1319–328, 2009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Chen, C.-Y., C. Bertozzi, Z. Zou, L. Yuan, J. S. Lee, M. Lu, S. J. Stachelek, S. Srinivasan, L. Guo, A. Vincente, P. Mericko, R. J. Levy, T. Makinen, G. Oliver, and M. L. Kahn. Blood flow reprograms lymphatic vessels to blood vessels. J. Clin. Investig. 122(6):2006–2017, 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Conklin, B. S., S. M. Surowiec, P. H. Lin, and C. Chen. A simple physiologic pulsatile perfusion system for the study of intact vascular tissue. Med. Eng. Phys. 22(6):441–449, 2000.

    Article  CAS  PubMed  Google Scholar 

  6. D’Ausilio, A. Arduino: A low-cost multipurpose lab equipment. Behav. Res. Methods 44(2):305–313, 2011.

    Article  Google Scholar 

  7. Davis, M. J., A. M. Davis, M. M. Lane, C. W. Ku, and A. A. Gashev. Rate-sensitive contractile responses of lymphatic vessels to circumferential stretch. J. Physiol. 587(Pt 1):165–182, Jan. 2009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Dixon, J. B., D. C. Zawieja, A. A. Gashev, and G. L. Coté. Measuring microlymphatic flow using fast video microscopy. J. Biomed. Opt. 10(6):064016, 2005.

    Article  PubMed  Google Scholar 

  9. Dixon, J. B., J. E. Moore Jr, G. Cote, A. A. Gashev, and D. C. Zawieja. Lymph flow, shear stress, and lymphocyte velocity in rat mesenteric prenodal lymphatics. Microcirculation 13(7):597–610, 2006.

    Article  PubMed  Google Scholar 

  10. El-Kurdi, M. S., J. S. Vipperman, and D. A. Vorp. Design and subspace system identification of an ex vivo vascular perfusion system. J. Biomech. Eng. 131(4):041012, 2009.

    Article  PubMed  Google Scholar 

  11. García, C. E., D. M. Prett, and M. Morari. Model predictive control: Theory and practice—a survey. Automatica 25(3):335–348, 1989.

    Article  Google Scholar 

  12. Gashev, A. A., M. J. Davis, and D. C. Zawieja. Inhibition of the active lymph pump by flow in rat mesenteric lymphatics and thoracic duct. J. Physiol. 540(3):1023–1037, 2002.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Gashev, A. A., M. J. Davis, M. D. Delp, and D. C. Zawieja. Regional variations of contractile activity in isolated rat lymphatics. Microcirculation 11(6):477–492, 2004.

    Article  CAS  PubMed  Google Scholar 

  14. Gleason, R. L., S. P. Gray, E. Wilson, and J. D. Humphrey. A multiaxial computer-controlled organ culture and biomechanical device for mouse carotid arteries. J. Biomech. Eng. 126(6):787–795, 2004.

    Article  CAS  PubMed  Google Scholar 

  15. Gretener, S. B., S. Lauchli, A. J. Leu, R. Koppensteiner, and U. Franzeck. Effect of venous and lymphatic congestion on lymph capillary pressure of the skin in healthy volunteers and patients with lymph edema. J. Vasc. Res., 37(1):61–67, 2000.

    Article  CAS  PubMed  Google Scholar 

  16. Hargens A. R., and B. W. Zweifach. Contractile stimuli in collecting lymph vessels. Am. J. Physiol. 233(1):H57–65, 1977.

    CAS  PubMed  Google Scholar 

  17. Holdsworth, D. W., D. W. Rickey, M. Drangova, D. J. Miller, and A. Fenster. Computer-controlled positive displacement pump for physiological flow simulation. Med. Biol. Eng. Comput. 29(6):565–570, 1991.

    Article  CAS  PubMed  Google Scholar 

  18. Hor, P. J., Z. Q. Zhu, D. Howe, and J. Rees-Jones. Minimization of cogging force in a linear permanent magnet motor. IEEE Trans. Magn. 34:3544–3547, 1998.

    Article  Google Scholar 

  19. Kassis, T., A. B. Kohan, M. J. Weiler, M. E. Nipper, R. Cornelius, P. Tso, and J. B. Dixon. Dual-channel in-situ optical imaging system for quantifying lipid uptake and lymphatic pump function. J. Biomed Opt. 17(8):086005–086005, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Kawai, Y., Y. Yokoyama, M. Kaidoh, and T. Ohhashi. Shear stress-induced ATP-mediated endothelial constitutive nitric oxide synthase expression in human lymphatic endothelial cells. Am. J. Physiol. Cell Physiol. 298(3):C647–C655, 2010.

    Article  CAS  PubMed  Google Scholar 

  21. Kornuta, J.A. Code and schematics for the ex-vivo lymphatic perfusion system (ELPS). https://github.com/jkornuta/elisha-evps, 2012

  22. Kornuta, J. A., M. E. Nipper, and J. B. Dixon. Low-cost microcontroller platform for studying lymphatic biomechanics in vitro. J. Biomech. 46(1):183–186, 2013.

    Article  PubMed  Google Scholar 

  23. Kuo, L., W. M. Chilian, and M. J. Davis. Interaction of pressure- and flow-induced responses in porcine coronary resistance vessels. Am. J. Physiol. 261(6 Pt 2):H1706–15, Dec. 1991.

    CAS  PubMed  Google Scholar 

  24. Kvietys, P. R., and D. N. Granger. Role of intestinal lymphatics in interstitial volume regulation and transmucosal water transport. Ann. N. Y. Acad. Sci. 1207(Suppl 1):E29–E43, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Levick, J. R., and C. C. Michel. Microvascular fluid exchange and the revised Starling principle. Cardiovasc. Res. 87(2):198–210, 2010.

    Article  CAS  PubMed  Google Scholar 

  26. Lipowsky, H. Microvascular rheology and hemodynamics. Microcirculation, 12(1):5–15, 2005.

    Article  PubMed  Google Scholar 

  27. McHale, N., and I. Roddie. Effect of transmural pressure on pumping activity in isolated bovine lymphatic vessels. J. Physiol. 261(2):255–269, 1976.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Morari, M., and J. H. Lee. Model predictive control: past, present and future. Comput. Chem. Eng. 23(4–5):667–682, 1999.

    Article  CAS  Google Scholar 

  29. Nipper, M., and J. B. Dixon. Engineering the lymphatic system. Cardiovasc. Eng. Technol. 2(4):296–308, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Ohhashi, T., T. Azuma, and M. Sakaguchi. Active and passive mechanical characteristics of bovine mesenteric lymphatics. Am. J. Physiol. 239(1):H88–95, 1980.

    CAS  PubMed  Google Scholar 

  31. Olszewski, W., and A. Engeset. Intrinsic contractility of prenodal lymph vessels and lymph flow in human leg. Am. J. Physiol. 239(6):H775–H783, 1980.

    CAS  PubMed  Google Scholar 

  32. Quick, C. M., A. M. Venugopal, A. A. Gashev, D. C. Zawieja, and R. H. Stewart. Intrinsic pump-conduit behavior of lymphangions. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292:R1510–R1518, 2007.

    Article  CAS  PubMed  Google Scholar 

  33. Rachev, A., Z. Dominguez, and R. Vito. System and method for investigating arterial remodeling. J. Biomech. Eng. 131(10):104501, 2009.

    Article  PubMed  Google Scholar 

  34. Rahbar, E., and J. E. Moore. A model of a radially expanding and contracting lymphangion. J. Biomech. 44(6):1001–1007, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Richalet, J., A. Rault, J. L. Testud, and J. Papon. Model predictive heuristic control: Applications to industrial processes. Automatica 14(5):413–428, 1978.

    Article  Google Scholar 

  36. Rockson, S. G. Lymphedema. Am. J. Med. 110(4):288–295, 2001.

    Article  CAS  PubMed  Google Scholar 

  37. Rockson, S. G., and K. K. Rivera. Estimating the population burden of lymphedema. Ann. N. Y. Acad. Sci. 1131:147–154, 2008.

    Article  PubMed  Google Scholar 

  38. Rutkowski, J. M., C. E. Markhus, C. C. Gyenge, K. Alitalo, H. Wiig, and M. A. Swartz. Dermal collagen and lipid deposition correlate with tissue swelling and hydraulic conductivity in murine primary lymphedema. Am. J. Pathol. 176(3):1122–1129, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Sabine, A., Y. Agalarov, H. Maby-El Hajjami, M. Jaquet, R. Hägerling, C. Pollmann, D. Bebber, A. Pfenniger, N. Miura, O. Dormond, J.-M. Calmes, R. H. Adams, T. Makinen, F. Kiefer, B. R. Kwak, and T. V. Petrova. Mechanotransduction, PROX1, and FOXC2 cooperate to control connexin37 and calcineurin during lymphatic-valve formation. Dev. Cell 22(2):430–445, 2012.

  40. Swartz, M. A. The physiology of the lymphatic system. Adv. Drug Deliv. Rev. 50(1–2):3–20, 2001.

    Article  CAS  PubMed  Google Scholar 

  41. Zawieja, D. C. Contractile physiology of lymphatics. Lymph. Res. Biol. 7(2):87–96, 2009.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to sincerely thank David C. Zawieja and Olga Y. Gasheva at the Texas A&M Health Science Center for providing and preparing the isolated rat thoracic ducts used in this paper. This material is based upon work supported under a National Science Foundation Graduate Research Fellowship. Any opinions, findings, conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. This study was also funded by the National Institutes of Health (R00HL091133 and R01HL113061).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Brandon Dixon.

Additional information

Associate Editor Dan Elson oversaw the review of this article.

Appendix: Time Window Length Calculation

Appendix: Time Window Length Calculation

In order to determine what constitutes a long \(\Delta t\), we must first estimate the transient dynamics relating the instantaneous syringe velocity (averaged between the two syringes), \(v_{\text {avg}}\), to the transaxial pressure gradient, \(\Delta P\). The instantaneous syringe velocity averaged between the two syringes is defined as follows:

$$\begin{aligned} v_{\text {avg}}(k) = \frac{\Delta x_{1,k}\delta _k - \Delta x_{2,k}\delta _k}{2 T_s} \end{aligned}$$
(A.1)

where \(T_s\) is the sampling time of the identification (see “Post-Experiment Shear Stress Estimation” section for additional nomenclature). Thus, using the data from the identification experiment shown in Fig. 2, one may reconstruct another identification of a single-input, single-output (SISO) system with \(v_{\text {avg}}\) as the input and \(\Delta P\) as the output. The validation data for this identification is shown in Fig. A1a (model order, \(n=4\), with good agreement), while the corresponding dynamic characteristics of this model is shown in Fig. A1b.

Figure A1
figure 9

(a) Validation data (from the experiment in Fig. 2) for the SISO dynamic model of the ELPS with average instantaneous syringe velocity between the two syringes as the input and transaxial pressure gradient as the output. (b) Bode plot of this SISO model of the ELPS showing the frequency response

Of course, this model does not take into account the dynamics between \(\Delta P\) and the flow rate through the vessel, which certainly contain some fluid compliance and inertance. However, assuming these effects are on the same order of magnitude as between \(v_{\text {avg}}\) and \(\Delta P\) (or smaller), a value of \(\Delta t\) much larger than these dynamics should suffice. To quantify the speed of these dynamics, the the 2% settling time, \(T_{\text {set}}\), is found from simulating the model in Fig. A1 in response to a step input. For this model, \(T_{\text {set}}\) is approximately 0.3 s; thus, to ensure \(\Delta t\) is long (\(> 10\,T_{\text {set}}\)), the authors define:

$$\begin{aligned} \Delta t&\gg T_{\text {set}}\nonumber \\&= 5 \text { sec} \end{aligned}$$
(A.2)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kornuta, J.A., Brandon Dixon, J. Ex Vivo Lymphatic Perfusion System for Independently Controlling Pressure Gradient and Transmural Pressure in Isolated Vessels. Ann Biomed Eng 42, 1691–1704 (2014). https://doi.org/10.1007/s10439-014-1024-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1024-6

Keywords

Navigation