Skip to main content

Advertisement

Log in

A Pull-Back Algorithm to Determine the Unloaded Vascular Geometry in Anisotropic Hyperelastic AAA Passive Mechanics

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Biomechanical studies on abdominal aortic aneurysms (AAA) seek to provide for better decision criteria to undergo surgical intervention for AAA repair. More accurate results can be obtained by using appropriate material models for the tissues along with accurate geometric models and more realistic boundary conditions for the lesion. However, patient-specific AAA models are generated from gated medical images in which the artery is under pressure. Therefore, identification of the AAA zero pressure geometry would allow for a more realistic estimate of the aneurysmal wall mechanics. This study proposes a novel iterative algorithm to find the zero pressure geometry of patient-specific AAA models. The methodology allows considering the anisotropic hyperelastic behavior of the aortic wall, its thickness and accounts for the presence of the intraluminal thrombus. Results on 12 patient-specific AAA geometric models indicate that the procedure is computational tractable and efficient, and preserves the global volume of the model. In addition, a comparison of the peak wall stress computed with the zero pressure and CT-based geometries during systole indicates that computations using CT-based geometric models underestimate the peak wall stress by 59 ± 64 and 47 ± 64 kPa for the isotropic and anisotropic material models of the arterial wall, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Alastrué, V., A. García, E. Peña, J. F. Rodríguez, M. Martínez, and M. Doblaré. Numerical framework for patient-specific computational modelling of vascular tissue. Commun. Numer. Methods Eng. 6:1–30, 2006.

    Google Scholar 

  2. Auer, M., and T. C. Gasser. Reconstruction and finite element mesh generation of abdominal aortic aneurysms from computerized tomography angiography data with minimal user interactions. IEEE Trans. Med. Imaging 29(4):1022–1028, 2010.

    Article  PubMed  CAS  Google Scholar 

  3. Brown, L. C., and J. L. Powell. Risk factors for aneurysm rupture in patients kept under ultrasound surveillance. UK small aneurysm trial participants. Ann. Surg. 230(3):289–296, 1999; discussion 296–297.

    Google Scholar 

  4. Carlson, D. E. Inverse deformation results for elastic materials. Z. Angew. Math. Phys. 20(2):261–263, 1969.

    Article  Google Scholar 

  5. Chadwick, P. Application of an energy-momentum tensor in elastostatics. J. Elasticity 5:249–258, 1975.

    Article  Google Scholar 

  6. de Putter, S., B. J. B. M. Wolters, M. C. M. Ruttena, M. Breeuwer, F. A. Gerritsen, and F. N. van de Vosse. Patient-specific initial wall stress in abdominal aortic aneurysms with a backward incremental method. J. Biomech. 40:1081–1090, 2006.

    Article  PubMed  Google Scholar 

  7. Demiray, H. A note on the elasticity of soft biological tissues. J. Biomech. 5:309–311, 1972.

    Article  PubMed  CAS  Google Scholar 

  8. Di Martino, E. S., and D. A. Vorp. Effect of variation in intraluminal thrombus constitutive properties on abdominal aortic aneurysm wall stress. Ann. Biomed. Eng. 31(7):804–809, 2003.

    Article  PubMed  Google Scholar 

  9. DiMartino, E. S., A. Bohra, J. P. Vande Geest, N. Y. Gupta, M. S. Makaroun, and D. A. Vorp. Biomechanical properties of ruptured versus electively repaired abdominal aortic aneurysm wall tissue. J. Vasc. Surg. 43:570–576, 2006.

    Article  Google Scholar 

  10. Fillinger, M. F., S. P. Marra, M. L. Raghavan, and F. E. Kennedy. Prediction of rupture risk in abdominal aortic aneurysm during observation: wall stress versus diameter. J. Vasc. Surg. 37(4):724–732, 2003.

    Article  PubMed  Google Scholar 

  11. Fillinger, M. F., M. L. Raghavan, S. P. Marra, J. L. Cronenwett, and F. E. Kennedy. In vivo analysis of mechanical wall stress and abdominal aortic aneurysm rupture risk. J. Vasc. Surg. 36(3):589–597, 2002.

    Article  PubMed  Google Scholar 

  12. Gasser, T. C. Bringing vascular biomechanics into clinical practice. Simulation-based decisions for elective abdominal aortic aneurysms repair. In: Patient-Specific Computational Modeling. Lecture Notes in Computational Vision and Biomechanics, edited by B. Calvo, and E. Pena. Dordrecht: Springer, 2012.

    Google Scholar 

  13. Gasser, T. C., M. Auer, F. Labruto, J. Swedenborg, and J. Roy. Biomechanical rupture risk assessment of abdominal aortic aneurysms: model complexity versus predictability of finite element simulations. Eur. J. Vasc. Endovasc. 40:176–185, 2010.

    Article  CAS  Google Scholar 

  14. Gasser, T. C., S. Gallinetti, X. Xing, C. Forsell, J. Swedenborg, and J. Roy. Spatial orientation of collagen fibers in the Abdominal Aortic Aneurysm’s wall and its relation to wall mechanics. Acta Biomater. 8(8):3091–3103, 2012.

    Article  PubMed  CAS  Google Scholar 

  15. Govindjee, S., and P. Mihalic. Computational methods for inverse finite elastostatics. Comput. Methods Appl. Mech. 136:47–57, 1996.

    Article  Google Scholar 

  16. Govindjee, S., and P. Mihalic. Computational methods for inverse deformations in quasi-incompressible finite elasticity. Int. J. Numer. Methods Eng. 43:821–838, 1998.

    Article  Google Scholar 

  17. Hans, S. S., O. Jareunpoon, B. Balasubramaniam, and G. B. Zelenock. Size and location of thrombus in intact and ruptured abdominal aortic aneurysms. J. Vasc. Surg. 41:584–588, 2005.

    Article  PubMed  Google Scholar 

  18. Heng, M. S., M. J. Fagan, W. Collier, G. Desai, P. T. McCollum, and I. C. Chetter. Peak wall stress measurement in elective and acute abdominal aortic aneurysms. J. Vasc. Surg. 47:17–22, 2008.

    Article  PubMed  Google Scholar 

  19. Holzapfel, G. A. Nonlinear Solid Mechanics. A Continuum Approach for Engineering. Chichester: John Wiley & Sons Ltd., 2000, 455 pp.

  20. Karkos, C., U. Mukhopadhyay, I. Papakostas, J. Ghosh, G. Thomson, and R. Hughes. Abdominal aortic aneurysm: the role of clinical examination and opportunistic detection. Eur. J. Vasc. Endovasc. Surg. 19:299–303, 2000.

    Article  PubMed  CAS  Google Scholar 

  21. Kazi, M., J. Thyberg, P. Religa, J. Roy, P. Eriksson, U. Hedin, and J. Swedenborg. Influence of intraluminal thrombus on structural and cellular composition of abdominal aortic aneurysm wall. J. Vasc. Surg. 38(6):1283–1292, 2003.

    Article  PubMed  Google Scholar 

  22. Larsson, E., F. Labruto, T. C. Gasser, J. Swedenborg, and R. Hultgren. Analysis of aortic wall stress and rupture risk in patients with abdominal aortic aneurysm with a gender perspective. J. Vasc. Surg. 54(2):295–299, 2011.

    Article  PubMed  Google Scholar 

  23. Limet, R., N. Sakalihassan, and A. Albert. Determination of the expansion rate and incidence of rupture of abdominal aortic aneurysms. J. Vasc. Surg. 14(4):540–548, 1991.

    Article  PubMed  CAS  Google Scholar 

  24. Lu, J., X. Zhou, and M. L. Raghavan. Inverse elastostatic stress analysis in pre-deformed biological structures: demonstration using abdominal aortic aneurysms. J. Biomech. 40:693–696, 2007.

    Article  PubMed  Google Scholar 

  25. Maier, A., M. W. Gee, C. Reeps, J. Pongratz, H. H. Eckstein, and W. A. Wall. A comparison of diameter, wall stress, and rupture potential index for abdominal aortic aneurysm rupture risk prediction. Ann. Biomed. Eng. 38:3124–3134, 2010.

    Article  PubMed  CAS  Google Scholar 

  26. Martufi, G., E. S. Di Martino, C. H. Amon, S. C. Muluk, and E. A. Finol. Three-dimensional geometrical characterization of abdominal aortic aneurysms: image-based wall thickness distribution. ASME J. Biomech. 131(6):061015, 2009.

    Article  Google Scholar 

  27. Newman, A. B., A. M. Arnold, G. L. Burke, D. H. O’Leary, and T. A. Manolio. Cardiovascular disease and mortality in older adults with small abdominal aortic aneurysms detected by ultrasonography: the cardiovascular health study. Ann. Intern. Med. 134(3):182–190, 2001.

    PubMed  CAS  Google Scholar 

  28. Powell, J. T., L. C. Brown, J. F. Forbes, F. G. Fowkes, R. M. Greenhalgh, C. V. Ruckley, and S. G. Thompson. Final 12-year follow-up of surgery versus surveillance in the UK Small Aneurysm Trial. Br. J. Surg. 94:702–708, 2007.

    Article  PubMed  CAS  Google Scholar 

  29. Raghavan, M. L., M. A. Baoshun, and M. F. Filinger. Non-invasive determination of zero-pressure geometry of arterial aneurysms. Ann. Biomed. Eng. 34(9):1414–1419, 2006.

    Article  PubMed  CAS  Google Scholar 

  30. Raghavan, M. L., J. Kratzberg, E. M. Castro de Tolosa, M. M. Hanaoka, P. Walker, and E. S. da Silva. Regional distribution of wall thickness and failure properties of human abdominal aortic aneurysm. J. Biomech. 39:3010–3016, 2006.

    Article  PubMed  Google Scholar 

  31. Raghavan, M. L., and D. A. Vorp. Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability. J. Biomech. 33(4):475–482, 2000.

    Article  PubMed  CAS  Google Scholar 

  32. Rissland, P., Y. Alemu, J. Ricotta, and D. Blustein. Abdominal aortic aneurysm risk of rupture: patient-specific FSI simulations using anisotropic model. ASME J. Biomech. 131(3):031001, 2009.

    Article  Google Scholar 

  33. Rodriguez, J. F., G. Martufi, M. Doblare, and E. A. Finol. The effect of material model formulation in the stress analysis of abdominal aortic aneurysms. Ann. Biomed. Eng. 37(11):2218–2221, 2009.

    Article  PubMed  Google Scholar 

  34. Rodriguez, J. F., C. Ruiz, M. Doblaré, and G. Holzapfel. Mechanical stresses in abdominal aortic aneurysms: influence of diameter, asymmetry, and material anisotropy. ASME J. Biomech. 130(2):021023, 2008.

    Article  Google Scholar 

  35. Sakalihasan, N., R. Limet, and O. D. Defawe. Abdominal aortic aneurysm. Lancet 365:1577–1589, 2005.

    Article  PubMed  CAS  Google Scholar 

  36. Shield, R. T. Inverse deformation results in finite elasticity. Z. Angew. Math. Phys. 78:490–500, 1967.

    Article  Google Scholar 

  37. Shum, J., E. S. Di Martino, A. Goldhammer, D. Goldman, L. Acker, G. Patel, J. H. Ng, G. Martufi, and E. A. Finol. Semi-automatic vessel wall detection and quantification of wall thickness in computed tomography images of human abdominal aortic aneurysms. Med. Phys. 37(2):638–648, 2010.

    Article  PubMed  Google Scholar 

  38. Shum, J., G. Martufi, E. S. Di Martino, C. B. Washington, J. Grisafi, S. C. Muluk, and E. A. Finol. Quantitative assessment of abdominal aortic aneurysm geometry. Ann. Biomed. Eng. 39(1):277–286, 2011.

    Article  PubMed  Google Scholar 

  39. Shum, J., A. Xu, I. Chatnuntawech, and E. A. Finol. A Framework for the Automatic Generation of Surface Topologies for Abdominal Aortic Aneurysm Models. Ann. Biomed. Eng. 39(1):249–259, 2011.

    Article  PubMed  Google Scholar 

  40. Speelman, L., E. M. Bosboom, G. W. Schurink, J. Buth, M. Breeuwer, M. J. Jacobs, and F. N. van de Vosse. Initial stress and nonlinear material behavior in patient-specific AAA wall stress analysis. J. Biomech. 42(11):1713–1719, 2009.

    Article  PubMed  CAS  Google Scholar 

  41. Thompson, S. G., H. A. Ashton, L. Gao, R. A. P. Scott, and Multicentre Aneurysm Screening Study Group. Screening men for abdominal aortic aneurysm: 10 year mortality and cost effectiveness results from the randomised Multicentre Aneurysm Screening Study. Brit. Med. J. 338:2307, 2009.

  42. Thubrikar, M. J., J. al-Soudi, and F. Robicsek. Wall stress studies of abdominal aortic aneurysm in a clinical model. Ann. Vasc. Surg. 15(3):355–366, 2001.

    Article  PubMed  CAS  Google Scholar 

  43. Truijers, M., J. A. Pol, L. J. Schultzekool, S. M. van Sterkenburg, M. F. Fillinger, and J. D. Blankensteijn. Wall stress analysis in small asymptomatic, symptomatic and ruptured abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg. 33(4):401–407, 2007.

    Article  PubMed  CAS  Google Scholar 

  44. Vande Geest, J. P., M. S. Sacks, and D. A. Vorp. The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta. J. Biomech. 39(7):1324–1334, 2006.

    Article  PubMed  Google Scholar 

  45. Venkatasubramaniam, A. K., M. J. Fagan, T. Mehta, K. J. Mylankal, B. Ray, G. Kuhan, I. C. Chetter, and P. T. McCollum. A comparative study of aortic wall stress using finite element analysis for rupture and non-ruptured abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg. 28:168–176, 2004.

    PubMed  CAS  Google Scholar 

  46. Vorp, D. A., M. L. Raghavan, and M. W. Webster. Wall stress studies of abdominal aortic aneurysms: influence of diameter, and asymmetry. J. Vasc. Surg. 27:632–639, 1998.

    Article  PubMed  CAS  Google Scholar 

  47. Wang, D. H. J., M. S. Makaroun, M. W. Webster, and D. A. Vorp. Effect of intraluminal thrombus on wall stress in patient-specific models of abdominal aortic aneurysm. J. Vasc. Surg. 36:598–604, 2002.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge research funding from project 071/UPB10/12 from the University of Zaragoza, and from NIH grants R21EB007651, R21EB008804 and R15HL087268. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose F. Rodriguez.

Additional information

Associate Editor Joan Greve oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riveros, F., Chandra, S., Finol, E.A. et al. A Pull-Back Algorithm to Determine the Unloaded Vascular Geometry in Anisotropic Hyperelastic AAA Passive Mechanics. Ann Biomed Eng 41, 694–708 (2013). https://doi.org/10.1007/s10439-012-0712-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0712-3

Keywords

Navigation