Skip to main content
Log in

Error Mechanisms of the Oscillometric Fixed-Ratio Blood Pressure Measurement Method

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The oscillometric fixed-ratio method is widely employed for non-invasive measurement of systolic and diastolic pressures (SP and DP) but is heuristic and prone to error. We investigated the accuracy of this method using an established mathematical model of oscillometry. First, to determine which factors materially affect the errors of the method, we applied a thorough parametric sensitivity analysis to the model. Then, to assess the impact of the significant parameters, we examined the errors over a physiologically relevant range of those parameters. The main findings of this model-based error analysis of the fixed-ratio method are that: (1) SP and DP errors drastically increase as the brachial artery stiffens over the zero trans-mural pressure regime; (2) SP and DP become overestimated and underestimated, respectively, as pulse pressure (PP) declines; (3) the impact of PP on SP and DP errors is more obvious as the brachial artery stiffens over the zero trans-mural pressure regime; and (4) SP and DP errors can be as large as 58 mmHg. Our final and main contribution is a comprehensive explanation of the mechanisms for these errors. This study may have important implications when using the fixed-ratio method, particularly in subjects with arterial disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Coleman, A., P. Freeman, S. Steel, and A. Shennan. Validation of the Omron MX3 Plus oscillometric blood pressure monitoring device according to the European Society of Hypertension international protocol. Blood Press Monit. 10(3):165–168, 2005.

    Article  PubMed  Google Scholar 

  2. Cristalli, C., and M. Ursino. Influence of arm soft tissue on non-invasive blood pressure measurements: an experimental and mathematical study. Measurement 14(3):229–240, 1995.

    Article  Google Scholar 

  3. de Greeff, A., Z. Beg, Z. Gangji, E. Dorney, and A. H. Shennan. Accuracy of inflationary versus deflationary oscillometry in pregnancy and preeclampsia: OMRON-MIT versus OMRON-M7. Blood Press Monit. 14(1):37–40, 2009.

    Article  PubMed  Google Scholar 

  4. Drzewiecki, G., R. Hood, and H. Apple. Theory of the oscillometric maximum and the systolic and diastolic detection ratios. Ann. Biomed. Eng. 22(1):88–96, 1994.

    Article  PubMed  CAS  Google Scholar 

  5. Geddes, L. A., M. Voelz, C. Combs, D. Reiner, and C. F. Babbs. Characterization of the oscillometric method for measuring indirect blood pressure. Ann. Biomed. Eng. 10(6):271–280, 1982.

    Article  PubMed  CAS  Google Scholar 

  6. Kaihura, C., M. D. Savvidou, J. M. Anderson, C. M. McEniery, and K. H. Nicolaides. Maternal arterial stiffness in pregnancies affected by preeclampsia. Am. J. Physiol. Heart Circ. Physiol. 297(2):H759–H764, 2009.

    Article  PubMed  CAS  Google Scholar 

  7. Longo, D., G. Toffanin, R. Garbelotto, V. Zaetta, L. Businaro, and P. Palatini. Performance of the UA-787 oscillometric blood pressure monitor according to the European Society of Hypertension protocol. Blood Press Monit. 8(2):91–95, 2003.

    Article  PubMed  Google Scholar 

  8. Marey, E. J. Pression et vitesse dn sang. Masson, Paris: Physiologie Experimentale, vol. 2, cb. VIII, 1876, pp. 307–343.

  9. Mauck, G. W., C. R. Smith, L. A. Geddes, and J. D. Bourland. The meaning of the point of maximum oscillations in cuff pressure in the indirect measurement of blood pressure—Part II. J. Biomech. Eng. 102:28–33, 1980.

    Article  PubMed  CAS  Google Scholar 

  10. Raamat, R., J. Talts, K. Jagomägi, and J. Kivastik. Errors of oscillometric blood pressure measurement as predicted by simulation. Blood Press Monit. 16(5):238–245, 2011.

    Article  PubMed  Google Scholar 

  11. Richter, H. A., and C. Mittermayer. Volume elasticity, modulus of elasticity and compliance of normal and arteriosclerotic human aorta. Biorheology 21(5):723–724, 1984.

    PubMed  CAS  Google Scholar 

  12. Stang, A., S. Moebus, S. Möhlenkamp, N. Dragano, A. Schmermund, E. M. Beck, J. Siegrist, R. Erbel, K. H. Jöckel, and Heinz Nixdorf Recall Study Investigative Group. Algorithms for converting random-zero to automated oscillometric blood pressure values, and vice versa. Am. J. Epidemiol. 165(7):848, 2007.

    Google Scholar 

  13. Ursino, M., and C. Cristalli. A mathematical study of some biomechanical factors affecting the oscillometric blood pressure measurement. IEEE Trans. Biomed. Eng. 43(8):761–778, 1996.

    Article  PubMed  CAS  Google Scholar 

  14. Vera-Cala, L. M., M. Orostegui, L. I. Valencia-Angel, N. López, and L. E. Bautista. Accuracy of the Omron HEM-705 CP for blood pressure measurement in large epidemiologic studies. Arq. Bras. Cardiol. 96(5):393–398, 2011.

    Article  PubMed  Google Scholar 

  15. Yelderman, M., and A. K. Ream. Indirect measurement of mean blood pressure in the anesthetized patient. Anesthesiology 50:253–256, 1979.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Telemedicine and Advanced Technology Research Center (TATRC) at the U.S. Army Medical Research and Materiel Command (USAMRMC) through award W81XWH-10-2-0124, a US National Science Foundation CAREER Grant [0643477], and the Natural Sciences and Engineering Research Council of Canada (NSERC).

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramakrishna Mukkamala.

Additional information

Associate Editor Joan Greve oversaw the review of this article.

Jiankun Liu and Jin-Oh Hahn are equally contributing first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Hahn, JO. & Mukkamala, R. Error Mechanisms of the Oscillometric Fixed-Ratio Blood Pressure Measurement Method. Ann Biomed Eng 41, 587–597 (2013). https://doi.org/10.1007/s10439-012-0700-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0700-7

Keywords

Navigation