Abstract
Sepsis accounts annually for nearly 10% of total U.S. deaths, costing nearly $17 billion/year. Sepsis is a manifestation of disordered systemic inflammation. Properly regulated inflammation allows for timely recognition and effective reaction to injury or infection, but inadequate or overly robust inflammation can lead to Multiple Organ Dysfunction Syndrome (MODS). There is an incongruity between the systemic nature of disordered inflammation (as the target of inflammation-modulating therapies), and the regional manifestation of organ-specific failure (as the subject of organ support), that presents a therapeutic dilemma: systemic interventions can interfere with an individual organ system’s appropriate response, yet organ-specific interventions may not help the overall system reorient itself. Based on a decade of systems and computational approaches to deciphering acute inflammation, along with translationally-motivated experimental studies in both small and large animals, we propose that MODS evolves due to the feed-forward cycle of inflammation → damage → inflammation. We hypothesize that inflammation proceeds at a given, “nested” level or scale until positive feedback exceeds a “tipping point.” Below this tipping point, inflammation is contained and manageable; when this threshold is crossed, inflammation becomes disordered, and dysfunction propagates to a higher biological scale (e.g., progressing from cellular, to tissue/organ, to multiple organs, to the organism). Finally, we suggest that a combination of computational biology approaches involving data-driven and mechanistic mathematical modeling, in close association with studies in clinically relevant paradigms of sepsis/MODS, are necessary in order to define scale-specific “tipping points” and to suggest novel therapies for sepsis.


Similar content being viewed by others
Abbreviations
- APRV:
-
Airway Pressure Release Ventilation
- ARDS:
-
Acute Respiratory Distress Syndrome
- AST:
-
Asparagine aminotransferase
- DAMP:
-
Damage-associated molecular pattern molecule
- DBN:
-
Dynamic Bayesian Network
- DyNA:
-
Dynamic Network Analysis
- FiO2 :
-
Fraction of inspired O2
- IL:
-
Interleukin
- MIST:
-
Minimally Invasive Suction and Treatment device
- MODS:
-
Multiple Organ Dysfunction Syndrome
- PaO2 :
-
Partial arterial O2 pressure
- PEEP:
-
Positive end-expiratory pressure
- SIRS:
-
Systemic Inflammatory Response Syndrome
- TNF-α:
-
Tumor necrosis factor-α
References
Abraham, E., and M. Singer. Mechanisms of sepsis-induced organ dysfunction. Crit. Care Med. 35:2408–2416, 2007.
Alon, U. Network motifs: theory and experimental approaches. Nat. Genet. 8:450–461, 2007.
An, G. Introduction of an agent based multi-scale modular architecture for dynamic knowledge representation of acute inflammation. Theor. Biol. Med. Model. 5:11, 2008.
An, G., J. Bartels, and Y. Vodovotz. In silico augmentation of the drug development pipeline: examples from the study of acute inflammation. Drug Dev. Res. 72:1–14, 2010.
An, G., C. A. Hunt, G. Clermont, E. Neugebauer, and Y. Vodovotz. Challenges and rewards on the road to translational systems biology in acute illness: four case reports from interdisciplinary teams. J. Crit. Care 22:169–175, 2007.
An, G., Q. Mi, J. Dutta-Moscato, A. Solovyev, and Y. Vodovotz. Agent-based models in translational systems biology. WIRES 1:159–171, 2009.
An, G., R. Namas, and Y. Vodovotz. Sepsis: From pattern to mechanism and back. Crit. Rev. Biomed. Eng., in press, 2012.
An, G., G. Nieman, and Y. Vodovotz. Computational and systems biology in trauma and sepsis: current state and future perspectives. Int. J. Burns Trauma 2:1–10, 2012.
Angus, D. C. The search for effective therapy for sepsis: back to the drawing board? JAMA 306:2614–2615, 2011.
Angus, D. C., W. T. Linde-Zwirble, J. Lidicker, G. Clermont, J. Carcillo, and M. R. Pinsky. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit. Care Med. 29:1303–1310, 2001.
Arkin, A. P., and D. A. Fletcher. Fast, cheap and somewhat in control. Genome Biol. 7:114, 2006.
Badami, C. D., M. Senthil, F. J. Caputo, B. J. Rupani, D. Doucet, V. Pisarenko, D. Z. Xu, Q. Lu, R. Feinman, and E. A. Deitch. Mesenteric lymph duct ligation improves survival in a lethal shock model. Shock 30:680–685, 2008.
Beutler, B., K. Hoebe, X. Du, and R. J. Ulevitch. How we detect microbes and respond to them: the Toll-like receptors and their transducers. J. Leukoc. Biol. 74:479–485, 2003.
Boujoukos, A. J., G. D. Martich, E. Supinski, and A. F. Suffredini. Compartmentalization of the acute cytokine response in humans after intravenous endotoxin administration. J. Appl. Physiol. 74:3027–3033, 1993.
Buchman, T. G. The community of the self. Nature 420:246–251, 2002.
Buchman, T. G., J. P. Cobb, A. S. Lapedes, and T. B. Kepler. Complex systems analysis: a tool for shock research. Shock 16:248–251, 2001.
Cavaillon, J. M., and D. Annane. Compartmentalization of the inflammatory response in sepsis and SIRS. J. Endotoxin Res. 12:151–170, 2006.
Chow, C. C., G. Clermont, R. Kumar, C. Lagoa, Z. Tawadrous, D. Gallo, B. Betten, J. Bartels, G. Constantine, M. P. Fink, T. R. Billiar, and Y. Vodovotz. The acute inflammatory response in diverse shock states. Shock 24:74–84, 2005.
Cobb, J. P., T. G. Buchman, I. E. Karl, and R. S. Hotchkiss. Molecular biology of multiple organ dysfunction syndrome: injury, adaptation, and apoptosis. Surg. Infect. (Larchmt) 1:207–215, 2000.
Cobb, J. P., and G. E. O’Keefe. Injury research in the genomic era. Lancet 363:2076–2083, 2004.
Cobb, J. P., A. F. Suffredini, and R. L. Danner. The Fourth National Institutes of Health Symposium on the Functional Genomics of Critical Injury: surviving stress from organ systems to molecules. Crit. Care Med. 36:2905–2911, 2008.
Cotton, B. A., J. S. Guy, J. A. Morris, Jr., and N. N. Abumrad. The cellular, metabolic, and systemic consequences of aggressive fluid resuscitation strategies. Shock 26:115–121, 2006.
Csete, M. E., and J. C. Doyle. Reverse engineering of biological complexity. Science 295:1664–1669, 2002.
Daun, S., J. Rubin, Y. Vodovotz, A. Roy, R. Parker, and G. Clermont. An ensemble of models of the acute inflammatory response to bacterial lipopolysaccharide in rats: results from parameter space reduction. J. Theor. Biol. 253:843–853, 2008.
De, M. E., and D. Annane. Year in review 2010: Critical Care—multiple organ dysfunction and sepsis. Crit. Care 15:236, 2011.
Deitch, E. A. Role of the gut lymphatic system in multiple organ failure. Curr. Opin. Crit. Care 7:92–98, 2001.
Deitch, E. A., E. Feketeova, J. M. Adams, R. M. Forsythe, D. Z. Xu, K. Itagaki, and H. Redl. Lymph from a primate baboon trauma hemorrhagic shock model activates human neutrophils. Shock 25:460–463, 2006.
Eichacker, P. Q., C. Parent, A. Kalil, C. Esposito, X. Cui, S. M. Banks, E. P. Gerstenberger, Y. Fitz, R. L. Danner, and C. Natanson. Risk and the efficacy of antiinflammatory agents: retrospective and confirmatory studies of sepsis. Am. J. Respir. Crit. Care Med. 166:1197–1205, 2002.
El-Achkar, T. M., M. Hosein, and P. C. Dagher. Pathways of renal injury in systemic gram-negative sepsis. Eur. J. Clin. Invest. 38(Suppl 2):39–44, 2008.
Ferguson, N. D., F. Frutos-Vivar, A. Esteban, A. Anzueto, I. Alia, R. G. Brower, T. E. Stewart, C. Apezteguia, M. Gonzalez, L. Soto, F. Abroug, and L. Brochard. Airway pressures, tidal volumes, and mortality in patients with acute respiratory distress syndrome. Crit. Care Med. 33:21–30, 2005.
Fink, M. P., and R. L. Delude. Epithelial barrier dysfunction: a unifying theme to explain the pathogenesis of multiple organ dysfunction at the cellular level. Crit. Care Clin. 21:177–196, 2005.
Foteinou, P. T., E. Yang, and I. P. Androulakis. Networks, biology and systems engineering: a case study in inflammation. Comput. Chem. Eng. 33:2028–2041, 2009.
Freeman, B. D., and C. Natanson. Anti-inflammatory therapies in sepsis and septic shock. Expert Opin. Investig. Drugs 9:1651–1663, 2000.
Fruchterman, T. M., D. A. Spain, M. A. Wilson, P. D. Harris, and R. N. Garrison. Selective microvascular endothelial cell dysfunction in the small intestine following resuscitated hemorrhagic shock. Shock 10:417–422, 1998.
Gaddnas, F. P., M. M. Sutinen, M. Koskela, T. Tervahartiala, T. Sorsa, T. A. Salo, J. J. Laurila, V. Koivukangas, T. I. Ala-Kokko, and A. Oikarinen. Matrix-metalloproteinase-2, -8 and -9 in serum and skin blister fluid in patients with severe sepsis. Crit. Care 14:R49, 2010.
Garrison, R. N., A. A. Conn, P. D. Harris, and R. Zakaria el. Direct peritoneal resuscitation as adjunct to conventional resuscitation from hemorrhagic shock: a better outcome. Surgery 136:900–908, 2004.
Garrison, R. N., and R. Zakaria el. Peritoneal resuscitation. Am. J. Surg. 190:181–185, 2005.
Gough, N. R., and M. B. Yaffe. Focus issue: conquering the data mountain. Sci. Signal. 4:eg2, 2011.
Grzegorczyk, M., and D. Husmeier. Improvements in the reconstruction of time-varying gene regulatory networks: dynamic programming and regularization by information sharing among genes. Bioinformatics 27:693–699, 2011.
Gustot, T. Multiple organ failure in sepsis: prognosis and role of systemic inflammatory response. Curr. Opin. Crit. Care 17:153–159, 2011.
Hack, C. E., and S. Zeerleder. The endothelium in sepsis: source of and a target for inflammation. Crit. Care Med. 29:S21–S27, 2001.
Hiltebrand, L. B., V. Krejci, S. M. Jakob, J. Takala, and G. H. Sigurdsson. Effects of vasopressin on microcirculatory blood flow in the gastrointestinal tract in anesthetized pigs in septic shock. Anesthesiology 106:1156–1167, 2007.
Hiltebrand, L. B., V. Krejci, and G. H. Sigurdsson. Effects of dopamine, dobutamine, and dopexamine on microcirculatory blood flow in the gastrointestinal tract during sepsis and anesthesia. Anesthesiology 100:1188–1197, 2004.
Ince, C. The microcirculation is the motor of sepsis. Crit. Care 9(Suppl 4):S13–S19, 2005.
Janes, K. A., J. G. Albeck, S. Gaudet, P. K. Sorger, D. A. Lauffenburger, and M. B. Yaffe. A systems model of signaling identifies a molecular basis set for cytokine-induced apoptosis. Science 310:1646–1653, 2005.
Janes, K. A., and M. B. Yaffe. Data-driven modelling of signal-transduction networks. Nat. Rev. Mol. Cell Biol. 7:820–828, 2006.
Jarrar, D., I. H. Chaudry, and P. Wang. Organ dysfunction following hemorrhage and sepsis: mechanisms and therapeutic approaches (Review). Int. J. Mol. Med. 4:575–583, 1999.
Kaye, A. D., J. M. Hoover, and A. R. Baluch. A contemporary review of multiple organ failure. Middle East J. Anesthesiol. 18:273–292, 2005.
Krejci, V., L. B. Hiltebrand, and G. H. Sigurdsson. Effects of epinephrine, norepinephrine, and phenylephrine on microcirculatory blood flow in the gastrointestinal tract in sepsis. Crit. Care Med. 34:1456–1463, 2006.
Kubiak, B. D., S. P. Albert, L. A. Gatto, K. P. Snyder, K. G. Maier, C. J. Vieau, S. Roy, and G. F. Nieman. Peritoneal negative pressure therapy prevents multiple organ injury in a chronic porcine sepsis and ischemia/reperfusion model. Shock 34:525–534, 2010.
Kubiak, B. D., S. P. Albert, L. A. Gatto, C. J. Vieau, S. K. Roy, K. P. Snyder, K. G. Maier, and G. F. Nieman. A clinically applicable porcine model of septic and ischemia/reperfusion-induced shock and multiple organ injury. J. Surg. Res. 166:e59–e69, 2011.
Lagoa, C. E., J. Bartels, A. Baratt, G. Tseng, G. Clermont, M. P. Fink, T. R. Billiar, and Y. Vodovotz. The role of initial trauma in the host’s response to injury and hemorrhage: insights from a comparison of mathematical simulations and hepatic transcriptomic analysis. Shock 26:592–600, 2006.
Malbrain, M. L., and I. De Laet. It’s all in the gut: introducing the concept of acute bowel injury and acute intestinal distress syndrome. Crit. Care Med. 37:365–366, 2009.
Marshall, J. C., E. Deitch, L. L. Moldawer, S. Opal, H. Redl, and T. V. Poll. Preclinical models of shock and sepsis: what can they tell us? Shock 24(Suppl 1):1–6, 2005.
Meduri, G. U., D. Annane, G. P. Chrousos, P. E. Marik, and S. E. Sinclair. Activation and regulation of systemic inflammation in ARDS: rationale for prolonged glucocorticoid therapy. Chest 136:1631–1643, 2009.
Mi, Q., G. Constantine, C. Ziraldo, A. Solovyev, A. Torres, R. Namas, T. Bentley, T. R. Billiar, R. Zamora, J. C. Puyana, and Y. Vodovotz. A dynamic view of trauma/hemorrhage-induced inflammation in mice: principal drivers and networks. PLoS ONE 6:e19424, 2011.
Mi, Q., N. Y. Li, C. Ziraldo, A. Ghuma, M. Mikheev, R. Squires, D. O. Okonkwo, K. Verdolini-Abbott, G. Constantine, G. An, and Y. Vodovotz. Translational systems biology of inflammation: potential applications to personalized medicine. Pers. Med. 7:549–559, 2010.
Mitka, M. Drug for severe sepsis is withdrawn from market, fails to reduce mortality. JAMA 306:2439–2440, 2011.
Molina, P. E., G. J. Bagby, and P. Stahls. Hemorrhage alters neuroendocrine, hemodynamic, and compartment-specific TNF responses to LPS. Shock 16:459–465, 2001.
Moore, F. A. The role of the gastrointestinal tract in postinjury multiple organ failure. Am. J. Surg. 178:449–453, 1999.
Namas, R., A. Ghuma, L. Hermus, R. Zamora, D. O. Okonkwo, T. R. Billiar, and Y. Vodovotz. The acute inflammatory response in trauma/hemorrhage and traumatic brain injury: current state and emerging prospects. Libyan J. Med. 4:136–148, 2009.
Namas, R., A. Ghuma, A. Torres, P. Polanco, H. Gomez, D. Barclay, L. Gordon, S. Zenker, H. K. Kim, L. Hermus, R. Zamora, M. R. Rosengart, G. Clermont, A. Peitzman, T. R. Billiar, J. Ochoa, M. R. Pinsky, J. C. Puyana, and Y. Vodovotz. An adequately robust early TNF-α response is a hallmark of survival following trauma/hemorrhage. PLoS ONE 4:e8406, 2009.
Namas, R., M. Mikheev, J. Yin, P. Over, M. Young, G. Constantine, R. Zamora, J. Gerlach, and Y. Vodovotz. A biohybrid device for the systemic control of acute inflammation. Disrupt. Science & Technol., in press, 2012.
Namas, R., R. Zamora, R. Namas, G. An, J. Doyle, T. E. Dick, F. J. Jacono, I. P. Androulakis, G. F. Nieman, S. Chang, T. R. Billiar, J. A. Kellum, D. C. Angus, and Y. Vodovotz. Sepsis: something old, something new, and a systems view. J. Criti. Care, 2011 July 26 [Epub ahead of print]. PMID: 21798705.
Natanson, C. Re-evaluation of anti-inflammatory trials in sepsis: a meta-analysis. In: Cytokines and Pulmonary Infection. Part II: The Role of Cytokines in Systemic and Pulmonary Medicine, edited by M. R. Pratter. Chicago: American Thoracic Society, 1997, pp. 7–18.
Nathan, C. Points of control in inflammation. Nature 420:846–852, 2002.
Neugebauer, E. A., and T. Tjardes. New approaches to shock and trauma research: learning from multidisciplinary exchange. J. Trauma 56:1156–1165, 2004.
Neugebauer, E. A., C. Willy, and S. Sauerland. Complexity and non-linearity in shock research: reductionism or synthesis? Shock 16:252–258, 2001.
Nieman, K., D. Brown, J. Sarkar, B. Kubiak, C. Ziraldo, C. Vieau, D. Barclay, L. Gatto, K. Maier, R. Zamora, Q. Mi, S. Chang, and Y. Vodovotz. A two-compartment mathematical model of endotoxin-induced inflammatory and physiologic alterations in swine. Crit. Care Med. 40:1052–1063, 2012.
Oda, K., and Kitano, H. A comprehensive map of the toll-like receptor signaling network. Mol. Syst. Biol. 2, (2006).
Parker, S. J., and P. E. Watkins. Experimental models of gram-negative sepsis. Br. J. Surg. 88:22–30, 2001.
Patton, G. C., C. Coffey, S. M. Sawyer, R. M. Viner, D. M. Haller, K. Bose, T. Vos, J. Ferguson, and C. D. Mathers. Global patterns of mortality in young people: a systematic analysis of population health data. Lancet 374:881–892, 2009.
Piper, R. D., D. J. Cook, R. C. Bone, and W. J. Sibbald. Introducing critical appraisal to studies of animal models investigating novel therapies in sepsis. Crit. Care Med. 24:2059–2070, 1996.
Prince, J. M., R. M. Levy, J. Bartels, A. Baratt, J. M. Kane, III, C. Lagoa, J. Rubin, J. Day, J. Wei, M. P. Fink, S. M. Goyert, G. Clermont, T. R. Billiar, and Y. Vodovotz. In silico and in vivo approach to elucidate the inflammatory complexity of CD14-deficient mice. Mol. Med. 12:88–96, 2006.
Remick, D., P. Manohar, G. Bolgos, J. Rodriguez, L. Moldawer, and G. Wollenberg. Blockade of tumor necrosis factor reduces lipopolysaccharide lethality, but not the lethality of cecal ligation and puncture. Shock 4:89–95, 1995.
Roy, S. K., B. D. Kubiak, S. P. Albert, C. J. Vieau, L. Gatto, L. Golub, H. M. Lee, S. Sookhu, Y. Vodovotz, and G. F. Nieman. Chemically modified tetracycline 3 prevents acute respiratory distress syndrome in a porcine model of sepsis + ischemia/reperfusion-induced lung injury. Shock 37:424–432, 2012.
Roy, S., B. Sadowitz, P. Andrews, L. Gatto, W. Marx, G. Wang, L. Ge, D. Dean, X. Lin, M. Kuhn, A. Ghosh, J. Satalin, K. Snyder, Y. Vodovotz, G. Nieman, and N. Habashi. Early stabilizing alveolar ventilation prevents ARDS- a novel timing-based ventilatory intervention to prevent lung injury. J. Trauma., in press, 2012.
Sakr, Y., J. L. Vincent, K. Reinhart, J. Groeneveld, A. Michalopoulos, C. L. Sprung, A. Artigas, and V. M. Ranieri. High tidal volume and positive fluid balance are associated with worse outcome in acute lung injury. Chest 128:3098–3108, 2005.
Schein, M., D. H. Wittmann, R. Holzheimer, and R. E. Condon. Hypothesis: compartmentalization of cytokines in intraabdominal infection [Review]. Surgery 119:694–700, 1996.
Senthil, M., M. Brown, D. Z. Xu, Q. Lu, E. Feketeova, and E. A. Deitch. Gut-lymph hypothesis of systemic inflammatory response syndrome/multiple-organ dysfunction syndrome: validating studies in a porcine model. J. Trauma 60:958–965, 2006.
Steinberg, S. M. Bacterial translocation: what it is and what it is not. Am. J. Surg. 186:301–305, 2003.
Steinberg, J., J. Halter, H. Schiller, L. Gatto, D. Carney, H. M. Lee, L. Golub, and G. Nieman. Chemically modified tetracycline prevents the development of septic shock and acute respiratory distress syndrome in a clinically applicable porcine model. Shock 24:348–356, 2005.
Steinberg, J., J. Halter, H. Schiller, L. Gatto, and G. Nieman. The development of acute respiratory distress syndrome after gut ischemia/reperfusion injury followed by fecal peritonitis in pigs: a clinically relevant model. Shock 23:129–137, 2005.
Suliburk, J., K. Helmer, F. Moore, and D. Mercer. The gut in systemic inflammatory response syndrome and sepsis. Enzyme systems fighting multiple organ failure. Eur. Surg. Res. 40:184–189, 2008.
Tjardes, T., and E. Neugebauer. Sepsis research in the next millennium: concentrate on the software rather than the hardware. Shock 17:1–8, 2002.
Torres, A., T. Bentley, J. Bartels, J. Sarkar, D. Barclay, R. Namas, G. Constantine, R. Zamora, J. C. Puyana, and Y. Vodovotz. Mathematical modeling of post-hemorrhage inflammation in mice: studies using a novel, computer-controlled, closed-loop hemorrhage apparatus. Shock 32:172–178, 2009.
Tracey, K. J. Reflex control of immunity. Nat. Rev. Immunol. 9:418–428, 2009.
van Haren, F. M., J. W. Sleigh, P. Pickkers, and J. G. van der Hoeven. Gastrointestinal perfusion in septic shock. Anaesth. Intensive Care 35:679–694, 2007.
Vidal, M. G. Incidence and clinical effects of intra-abdominal hypertension in critically ill patients. Crit. Care Med. 36:1823–1831, 2008.
Vodovotz, Y. Translational systems biology of inflammation and healing. Wound Repair Regen 18:3–7, 2010.
Vodovotz, Y. At the interface between acute and chronic inflammation: insights from computational modeling. In: Chronic Inflammation: Nutritional & Therapeutic Interventions, edited by S. Roy, and C. Sen. Florence, KY: Taylor & Francis, 2012.
Vodovotz, Y., and G. An. Systems biology and inflammation. In: Systems Biology in Drug Discovery and Development: Methods and Protocols, edited by Q. Yan. Totowa, NJ: Springer, 2009, pp. 181–201.
Vodovotz, Y., C. C. Chow, J. Bartels, C. Lagoa, J. Prince, R. Levy, R. Kumar, J. Day, J. Rubin, G. Constantine, T. R. Billiar, M. P. Fink, and G. Clermont. In silico models of acute inflammation in animals. Shock 26:235–244, 2006.
Vodovotz, Y., G. Clermont, C. Chow, and G. An. Mathematical models of the acute inflammatory response. Curr. Opin. Crit. Care 10:383–390, 2004.
Vodovotz, Y., G. Constantine, J. Rubin, M. Csete, E. O. Voit, and G. An. Mechanistic simulations of inflammation: current state and future prospects. Math. Biosci. 217:1–10, 2009.
Vodovotz, Y., M. Csete, J. Bartels, S. Chang, and G. An. Translational systems biology of inflammation. PLoS Comput. Biol. 4:1–6, 2008.
Weber, W., and M. Fussenegger. Emerging biomedical applications of synthetic biology. Nat. Rev. Genet. 13:21–35, 2012.
World Health Organization Report. Young People: Health Risks and Solutions. http://www.who.int/mediacentre/factsheets/fs345/en/index.html. Accessed January 31, 2012.
Zakaria el, R., J. E. Campbell, J. C. Peyton, and R. N. Garrison. Postresuscitation tissue neutrophil infiltration is time-dependent and organ-specific. J. Surg. Res. 143:119–125, 2007.
Zakaria el, R., N. Li, and R. N. Garrison. Mechanisms of direct peritoneal resuscitation-mediated splanchnic hyperperfusion following hemorrhagic shock. Shock 27:436–442, 2007.
Zakaria el, R., N. Li, P. J. Matheson, and R. N. Garrison. Cellular edema regulates tissue capillary perfusion after hemorrhage resuscitation. Surgery 142:487–496, 2007.
Acknowledgments
This work was supported in part by the National Institutes of Health grants R01GM67240, P50GM53789, R33HL089082, R01HL080926, R01AI080799, R01HL76157, R01DC008290, and UO1DK072146; National Institute on Disability and Rehabilitation Research grant H133E070024; National Science Foundation grant 0830-370-V601; a Shared University Research Award from IBM, Inc.; and grants from the Commonwealth of Pennsylvania, the Pittsburgh Lifesciences Greenhouse, and the Pittsburgh Tissue Engineering Initiative/Department of Defense.
Author information
Authors and Affiliations
Corresponding author
Additional information
Associate Editor Scott L. Diamond oversaw the review of this article.
Rights and permissions
About this article
Cite this article
An, G., Nieman, G. & Vodovotz, Y. Toward Computational Identification of Multiscale “Tipping Points” in Acute Inflammation and Multiple Organ Failure. Ann Biomed Eng 40, 2414–2424 (2012). https://doi.org/10.1007/s10439-012-0565-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10439-012-0565-9