Skip to main content

Advertisement

Log in

Toward Computational Identification of Multiscale “Tipping Points” in Acute Inflammation and Multiple Organ Failure

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Sepsis accounts annually for nearly 10% of total U.S. deaths, costing nearly $17 billion/year. Sepsis is a manifestation of disordered systemic inflammation. Properly regulated inflammation allows for timely recognition and effective reaction to injury or infection, but inadequate or overly robust inflammation can lead to Multiple Organ Dysfunction Syndrome (MODS). There is an incongruity between the systemic nature of disordered inflammation (as the target of inflammation-modulating therapies), and the regional manifestation of organ-specific failure (as the subject of organ support), that presents a therapeutic dilemma: systemic interventions can interfere with an individual organ system’s appropriate response, yet organ-specific interventions may not help the overall system reorient itself. Based on a decade of systems and computational approaches to deciphering acute inflammation, along with translationally-motivated experimental studies in both small and large animals, we propose that MODS evolves due to the feed-forward cycle of inflammation → damage → inflammation. We hypothesize that inflammation proceeds at a given, “nested” level or scale until positive feedback exceeds a “tipping point.” Below this tipping point, inflammation is contained and manageable; when this threshold is crossed, inflammation becomes disordered, and dysfunction propagates to a higher biological scale (e.g., progressing from cellular, to tissue/organ, to multiple organs, to the organism). Finally, we suggest that a combination of computational biology approaches involving data-driven and mechanistic mathematical modeling, in close association with studies in clinically relevant paradigms of sepsis/MODS, are necessary in order to define scale-specific “tipping points” and to suggest novel therapies for sepsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

Abbreviations

APRV:

Airway Pressure Release Ventilation

ARDS:

Acute Respiratory Distress Syndrome

AST:

Asparagine aminotransferase

DAMP:

Damage-associated molecular pattern molecule

DBN:

Dynamic Bayesian Network

DyNA:

Dynamic Network Analysis

FiO2 :

Fraction of inspired O2

IL:

Interleukin

MIST:

Minimally Invasive Suction and Treatment device

MODS:

Multiple Organ Dysfunction Syndrome

PaO2 :

Partial arterial O2 pressure

PEEP:

Positive end-expiratory pressure

SIRS:

Systemic Inflammatory Response Syndrome

TNF-α:

Tumor necrosis factor-α

References

  1. Abraham, E., and M. Singer. Mechanisms of sepsis-induced organ dysfunction. Crit. Care Med. 35:2408–2416, 2007.

    Article  PubMed  Google Scholar 

  2. Alon, U. Network motifs: theory and experimental approaches. Nat. Genet. 8:450–461, 2007.

    Article  CAS  Google Scholar 

  3. An, G. Introduction of an agent based multi-scale modular architecture for dynamic knowledge representation of acute inflammation. Theor. Biol. Med. Model. 5:11, 2008.

    Article  PubMed  Google Scholar 

  4. An, G., J. Bartels, and Y. Vodovotz. In silico augmentation of the drug development pipeline: examples from the study of acute inflammation. Drug Dev. Res. 72:1–14, 2010.

    Google Scholar 

  5. An, G., C. A. Hunt, G. Clermont, E. Neugebauer, and Y. Vodovotz. Challenges and rewards on the road to translational systems biology in acute illness: four case reports from interdisciplinary teams. J. Crit. Care 22:169–175, 2007.

    Article  PubMed  Google Scholar 

  6. An, G., Q. Mi, J. Dutta-Moscato, A. Solovyev, and Y. Vodovotz. Agent-based models in translational systems biology. WIRES 1:159–171, 2009.

    CAS  Google Scholar 

  7. An, G., R. Namas, and Y. Vodovotz. Sepsis: From pattern to mechanism and back. Crit. Rev. Biomed. Eng., in press, 2012.

  8. An, G., G. Nieman, and Y. Vodovotz. Computational and systems biology in trauma and sepsis: current state and future perspectives. Int. J. Burns Trauma 2:1–10, 2012.

    PubMed  Google Scholar 

  9. Angus, D. C. The search for effective therapy for sepsis: back to the drawing board? JAMA 306:2614–2615, 2011.

    Article  PubMed  CAS  Google Scholar 

  10. Angus, D. C., W. T. Linde-Zwirble, J. Lidicker, G. Clermont, J. Carcillo, and M. R. Pinsky. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit. Care Med. 29:1303–1310, 2001.

    Article  PubMed  CAS  Google Scholar 

  11. Arkin, A. P., and D. A. Fletcher. Fast, cheap and somewhat in control. Genome Biol. 7:114, 2006.

    Article  PubMed  Google Scholar 

  12. Badami, C. D., M. Senthil, F. J. Caputo, B. J. Rupani, D. Doucet, V. Pisarenko, D. Z. Xu, Q. Lu, R. Feinman, and E. A. Deitch. Mesenteric lymph duct ligation improves survival in a lethal shock model. Shock 30:680–685, 2008.

    Article  PubMed  Google Scholar 

  13. Beutler, B., K. Hoebe, X. Du, and R. J. Ulevitch. How we detect microbes and respond to them: the Toll-like receptors and their transducers. J. Leukoc. Biol. 74:479–485, 2003.

    Article  PubMed  CAS  Google Scholar 

  14. Boujoukos, A. J., G. D. Martich, E. Supinski, and A. F. Suffredini. Compartmentalization of the acute cytokine response in humans after intravenous endotoxin administration. J. Appl. Physiol. 74:3027–3033, 1993.

    PubMed  CAS  Google Scholar 

  15. Buchman, T. G. The community of the self. Nature 420:246–251, 2002.

    Article  PubMed  CAS  Google Scholar 

  16. Buchman, T. G., J. P. Cobb, A. S. Lapedes, and T. B. Kepler. Complex systems analysis: a tool for shock research. Shock 16:248–251, 2001.

    Article  PubMed  CAS  Google Scholar 

  17. Cavaillon, J. M., and D. Annane. Compartmentalization of the inflammatory response in sepsis and SIRS. J. Endotoxin Res. 12:151–170, 2006.

    Article  PubMed  CAS  Google Scholar 

  18. Chow, C. C., G. Clermont, R. Kumar, C. Lagoa, Z. Tawadrous, D. Gallo, B. Betten, J. Bartels, G. Constantine, M. P. Fink, T. R. Billiar, and Y. Vodovotz. The acute inflammatory response in diverse shock states. Shock 24:74–84, 2005.

    Article  PubMed  CAS  Google Scholar 

  19. Cobb, J. P., T. G. Buchman, I. E. Karl, and R. S. Hotchkiss. Molecular biology of multiple organ dysfunction syndrome: injury, adaptation, and apoptosis. Surg. Infect. (Larchmt) 1:207–215, 2000.

    Article  CAS  Google Scholar 

  20. Cobb, J. P., and G. E. O’Keefe. Injury research in the genomic era. Lancet 363:2076–2083, 2004.

    Article  PubMed  CAS  Google Scholar 

  21. Cobb, J. P., A. F. Suffredini, and R. L. Danner. The Fourth National Institutes of Health Symposium on the Functional Genomics of Critical Injury: surviving stress from organ systems to molecules. Crit. Care Med. 36:2905–2911, 2008.

    Article  PubMed  CAS  Google Scholar 

  22. Cotton, B. A., J. S. Guy, J. A. Morris, Jr., and N. N. Abumrad. The cellular, metabolic, and systemic consequences of aggressive fluid resuscitation strategies. Shock 26:115–121, 2006.

    Article  PubMed  CAS  Google Scholar 

  23. Csete, M. E., and J. C. Doyle. Reverse engineering of biological complexity. Science 295:1664–1669, 2002.

    Article  PubMed  CAS  Google Scholar 

  24. Daun, S., J. Rubin, Y. Vodovotz, A. Roy, R. Parker, and G. Clermont. An ensemble of models of the acute inflammatory response to bacterial lipopolysaccharide in rats: results from parameter space reduction. J. Theor. Biol. 253:843–853, 2008.

    Article  PubMed  CAS  Google Scholar 

  25. De, M. E., and D. Annane. Year in review 2010: Critical Care—multiple organ dysfunction and sepsis. Crit. Care 15:236, 2011.

    Article  Google Scholar 

  26. Deitch, E. A. Role of the gut lymphatic system in multiple organ failure. Curr. Opin. Crit. Care 7:92–98, 2001.

    Article  PubMed  CAS  Google Scholar 

  27. Deitch, E. A., E. Feketeova, J. M. Adams, R. M. Forsythe, D. Z. Xu, K. Itagaki, and H. Redl. Lymph from a primate baboon trauma hemorrhagic shock model activates human neutrophils. Shock 25:460–463, 2006.

    Article  PubMed  Google Scholar 

  28. Eichacker, P. Q., C. Parent, A. Kalil, C. Esposito, X. Cui, S. M. Banks, E. P. Gerstenberger, Y. Fitz, R. L. Danner, and C. Natanson. Risk and the efficacy of antiinflammatory agents: retrospective and confirmatory studies of sepsis. Am. J. Respir. Crit. Care Med. 166:1197–1205, 2002.

    Article  PubMed  Google Scholar 

  29. El-Achkar, T. M., M. Hosein, and P. C. Dagher. Pathways of renal injury in systemic gram-negative sepsis. Eur. J. Clin. Invest. 38(Suppl 2):39–44, 2008.

    Article  PubMed  CAS  Google Scholar 

  30. Ferguson, N. D., F. Frutos-Vivar, A. Esteban, A. Anzueto, I. Alia, R. G. Brower, T. E. Stewart, C. Apezteguia, M. Gonzalez, L. Soto, F. Abroug, and L. Brochard. Airway pressures, tidal volumes, and mortality in patients with acute respiratory distress syndrome. Crit. Care Med. 33:21–30, 2005.

    Article  PubMed  Google Scholar 

  31. Fink, M. P., and R. L. Delude. Epithelial barrier dysfunction: a unifying theme to explain the pathogenesis of multiple organ dysfunction at the cellular level. Crit. Care Clin. 21:177–196, 2005.

    Article  PubMed  CAS  Google Scholar 

  32. Foteinou, P. T., E. Yang, and I. P. Androulakis. Networks, biology and systems engineering: a case study in inflammation. Comput. Chem. Eng. 33:2028–2041, 2009.

    Article  PubMed  CAS  Google Scholar 

  33. Freeman, B. D., and C. Natanson. Anti-inflammatory therapies in sepsis and septic shock. Expert Opin. Investig. Drugs 9:1651–1663, 2000.

    Article  PubMed  CAS  Google Scholar 

  34. Fruchterman, T. M., D. A. Spain, M. A. Wilson, P. D. Harris, and R. N. Garrison. Selective microvascular endothelial cell dysfunction in the small intestine following resuscitated hemorrhagic shock. Shock 10:417–422, 1998.

    Article  PubMed  CAS  Google Scholar 

  35. Gaddnas, F. P., M. M. Sutinen, M. Koskela, T. Tervahartiala, T. Sorsa, T. A. Salo, J. J. Laurila, V. Koivukangas, T. I. Ala-Kokko, and A. Oikarinen. Matrix-metalloproteinase-2, -8 and -9 in serum and skin blister fluid in patients with severe sepsis. Crit. Care 14:R49, 2010.

    Article  PubMed  Google Scholar 

  36. Garrison, R. N., A. A. Conn, P. D. Harris, and R. Zakaria el. Direct peritoneal resuscitation as adjunct to conventional resuscitation from hemorrhagic shock: a better outcome. Surgery 136:900–908, 2004.

    Article  PubMed  Google Scholar 

  37. Garrison, R. N., and R. Zakaria el. Peritoneal resuscitation. Am. J. Surg. 190:181–185, 2005.

    Article  PubMed  Google Scholar 

  38. Gough, N. R., and M. B. Yaffe. Focus issue: conquering the data mountain. Sci. Signal. 4:eg2, 2011.

    Article  PubMed  Google Scholar 

  39. Grzegorczyk, M., and D. Husmeier. Improvements in the reconstruction of time-varying gene regulatory networks: dynamic programming and regularization by information sharing among genes. Bioinformatics 27:693–699, 2011.

    Article  PubMed  CAS  Google Scholar 

  40. Gustot, T. Multiple organ failure in sepsis: prognosis and role of systemic inflammatory response. Curr. Opin. Crit. Care 17:153–159, 2011.

    Article  PubMed  Google Scholar 

  41. Hack, C. E., and S. Zeerleder. The endothelium in sepsis: source of and a target for inflammation. Crit. Care Med. 29:S21–S27, 2001.

    Article  PubMed  CAS  Google Scholar 

  42. Hiltebrand, L. B., V. Krejci, S. M. Jakob, J. Takala, and G. H. Sigurdsson. Effects of vasopressin on microcirculatory blood flow in the gastrointestinal tract in anesthetized pigs in septic shock. Anesthesiology 106:1156–1167, 2007.

    Article  PubMed  CAS  Google Scholar 

  43. Hiltebrand, L. B., V. Krejci, and G. H. Sigurdsson. Effects of dopamine, dobutamine, and dopexamine on microcirculatory blood flow in the gastrointestinal tract during sepsis and anesthesia. Anesthesiology 100:1188–1197, 2004.

    Article  PubMed  CAS  Google Scholar 

  44. Ince, C. The microcirculation is the motor of sepsis. Crit. Care 9(Suppl 4):S13–S19, 2005.

    Article  PubMed  Google Scholar 

  45. Janes, K. A., J. G. Albeck, S. Gaudet, P. K. Sorger, D. A. Lauffenburger, and M. B. Yaffe. A systems model of signaling identifies a molecular basis set for cytokine-induced apoptosis. Science 310:1646–1653, 2005.

    Article  PubMed  CAS  Google Scholar 

  46. Janes, K. A., and M. B. Yaffe. Data-driven modelling of signal-transduction networks. Nat. Rev. Mol. Cell Biol. 7:820–828, 2006.

    Article  PubMed  CAS  Google Scholar 

  47. Jarrar, D., I. H. Chaudry, and P. Wang. Organ dysfunction following hemorrhage and sepsis: mechanisms and therapeutic approaches (Review). Int. J. Mol. Med. 4:575–583, 1999.

    PubMed  CAS  Google Scholar 

  48. Kaye, A. D., J. M. Hoover, and A. R. Baluch. A contemporary review of multiple organ failure. Middle East J. Anesthesiol. 18:273–292, 2005.

    PubMed  Google Scholar 

  49. Krejci, V., L. B. Hiltebrand, and G. H. Sigurdsson. Effects of epinephrine, norepinephrine, and phenylephrine on microcirculatory blood flow in the gastrointestinal tract in sepsis. Crit. Care Med. 34:1456–1463, 2006.

    Article  PubMed  CAS  Google Scholar 

  50. Kubiak, B. D., S. P. Albert, L. A. Gatto, K. P. Snyder, K. G. Maier, C. J. Vieau, S. Roy, and G. F. Nieman. Peritoneal negative pressure therapy prevents multiple organ injury in a chronic porcine sepsis and ischemia/reperfusion model. Shock 34:525–534, 2010.

    Article  PubMed  CAS  Google Scholar 

  51. Kubiak, B. D., S. P. Albert, L. A. Gatto, C. J. Vieau, S. K. Roy, K. P. Snyder, K. G. Maier, and G. F. Nieman. A clinically applicable porcine model of septic and ischemia/reperfusion-induced shock and multiple organ injury. J. Surg. Res. 166:e59–e69, 2011.

    Article  PubMed  Google Scholar 

  52. Lagoa, C. E., J. Bartels, A. Baratt, G. Tseng, G. Clermont, M. P. Fink, T. R. Billiar, and Y. Vodovotz. The role of initial trauma in the host’s response to injury and hemorrhage: insights from a comparison of mathematical simulations and hepatic transcriptomic analysis. Shock 26:592–600, 2006.

    Article  PubMed  CAS  Google Scholar 

  53. Malbrain, M. L., and I. De Laet. It’s all in the gut: introducing the concept of acute bowel injury and acute intestinal distress syndrome. Crit. Care Med. 37:365–366, 2009.

    Article  PubMed  Google Scholar 

  54. Marshall, J. C., E. Deitch, L. L. Moldawer, S. Opal, H. Redl, and T. V. Poll. Preclinical models of shock and sepsis: what can they tell us? Shock 24(Suppl 1):1–6, 2005.

    Article  PubMed  Google Scholar 

  55. Meduri, G. U., D. Annane, G. P. Chrousos, P. E. Marik, and S. E. Sinclair. Activation and regulation of systemic inflammation in ARDS: rationale for prolonged glucocorticoid therapy. Chest 136:1631–1643, 2009.

    Article  PubMed  Google Scholar 

  56. Mi, Q., G. Constantine, C. Ziraldo, A. Solovyev, A. Torres, R. Namas, T. Bentley, T. R. Billiar, R. Zamora, J. C. Puyana, and Y. Vodovotz. A dynamic view of trauma/hemorrhage-induced inflammation in mice: principal drivers and networks. PLoS ONE 6:e19424, 2011.

    Article  PubMed  CAS  Google Scholar 

  57. Mi, Q., N. Y. Li, C. Ziraldo, A. Ghuma, M. Mikheev, R. Squires, D. O. Okonkwo, K. Verdolini-Abbott, G. Constantine, G. An, and Y. Vodovotz. Translational systems biology of inflammation: potential applications to personalized medicine. Pers. Med. 7:549–559, 2010.

    Article  Google Scholar 

  58. Mitka, M. Drug for severe sepsis is withdrawn from market, fails to reduce mortality. JAMA 306:2439–2440, 2011.

    Article  PubMed  CAS  Google Scholar 

  59. Molina, P. E., G. J. Bagby, and P. Stahls. Hemorrhage alters neuroendocrine, hemodynamic, and compartment-specific TNF responses to LPS. Shock 16:459–465, 2001.

    Article  PubMed  CAS  Google Scholar 

  60. Moore, F. A. The role of the gastrointestinal tract in postinjury multiple organ failure. Am. J. Surg. 178:449–453, 1999.

    Article  PubMed  CAS  Google Scholar 

  61. Namas, R., A. Ghuma, L. Hermus, R. Zamora, D. O. Okonkwo, T. R. Billiar, and Y. Vodovotz. The acute inflammatory response in trauma/hemorrhage and traumatic brain injury: current state and emerging prospects. Libyan J. Med. 4:136–148, 2009.

    Article  Google Scholar 

  62. Namas, R., A. Ghuma, A. Torres, P. Polanco, H. Gomez, D. Barclay, L. Gordon, S. Zenker, H. K. Kim, L. Hermus, R. Zamora, M. R. Rosengart, G. Clermont, A. Peitzman, T. R. Billiar, J. Ochoa, M. R. Pinsky, J. C. Puyana, and Y. Vodovotz. An adequately robust early TNF-α response is a hallmark of survival following trauma/hemorrhage. PLoS ONE 4:e8406, 2009.

    Article  PubMed  Google Scholar 

  63. Namas, R., M. Mikheev, J. Yin, P. Over, M. Young, G. Constantine, R. Zamora, J. Gerlach, and Y. Vodovotz. A biohybrid device for the systemic control of acute inflammation. Disrupt. Science & Technol., in press, 2012.

  64. Namas, R., R. Zamora, R. Namas, G. An, J. Doyle, T. E. Dick, F. J. Jacono, I. P. Androulakis, G. F. Nieman, S. Chang, T. R. Billiar, J. A. Kellum, D. C. Angus, and Y. Vodovotz. Sepsis: something old, something new, and a systems view. J. Criti. Care, 2011 July 26 [Epub ahead of print]. PMID: 21798705.

  65. Natanson, C. Re-evaluation of anti-inflammatory trials in sepsis: a meta-analysis. In: Cytokines and Pulmonary Infection. Part II: The Role of Cytokines in Systemic and Pulmonary Medicine, edited by M. R. Pratter. Chicago: American Thoracic Society, 1997, pp. 7–18.

    Google Scholar 

  66. Nathan, C. Points of control in inflammation. Nature 420:846–852, 2002.

    Article  PubMed  CAS  Google Scholar 

  67. Neugebauer, E. A., and T. Tjardes. New approaches to shock and trauma research: learning from multidisciplinary exchange. J. Trauma 56:1156–1165, 2004.

    Article  PubMed  CAS  Google Scholar 

  68. Neugebauer, E. A., C. Willy, and S. Sauerland. Complexity and non-linearity in shock research: reductionism or synthesis? Shock 16:252–258, 2001.

    Article  PubMed  CAS  Google Scholar 

  69. Nieman, K., D. Brown, J. Sarkar, B. Kubiak, C. Ziraldo, C. Vieau, D. Barclay, L. Gatto, K. Maier, R. Zamora, Q. Mi, S. Chang, and Y. Vodovotz. A two-compartment mathematical model of endotoxin-induced inflammatory and physiologic alterations in swine. Crit. Care Med. 40:1052–1063, 2012.

    Article  PubMed  Google Scholar 

  70. Oda, K., and Kitano, H. A comprehensive map of the toll-like receptor signaling network. Mol. Syst. Biol. 2, (2006).

  71. Parker, S. J., and P. E. Watkins. Experimental models of gram-negative sepsis. Br. J. Surg. 88:22–30, 2001.

    Article  PubMed  CAS  Google Scholar 

  72. Patton, G. C., C. Coffey, S. M. Sawyer, R. M. Viner, D. M. Haller, K. Bose, T. Vos, J. Ferguson, and C. D. Mathers. Global patterns of mortality in young people: a systematic analysis of population health data. Lancet 374:881–892, 2009.

    Article  PubMed  Google Scholar 

  73. Piper, R. D., D. J. Cook, R. C. Bone, and W. J. Sibbald. Introducing critical appraisal to studies of animal models investigating novel therapies in sepsis. Crit. Care Med. 24:2059–2070, 1996.

    Article  PubMed  CAS  Google Scholar 

  74. Prince, J. M., R. M. Levy, J. Bartels, A. Baratt, J. M. Kane, III, C. Lagoa, J. Rubin, J. Day, J. Wei, M. P. Fink, S. M. Goyert, G. Clermont, T. R. Billiar, and Y. Vodovotz. In silico and in vivo approach to elucidate the inflammatory complexity of CD14-deficient mice. Mol. Med. 12:88–96, 2006.

    Article  PubMed  CAS  Google Scholar 

  75. Remick, D., P. Manohar, G. Bolgos, J. Rodriguez, L. Moldawer, and G. Wollenberg. Blockade of tumor necrosis factor reduces lipopolysaccharide lethality, but not the lethality of cecal ligation and puncture. Shock 4:89–95, 1995.

    Article  PubMed  CAS  Google Scholar 

  76. Roy, S. K., B. D. Kubiak, S. P. Albert, C. J. Vieau, L. Gatto, L. Golub, H. M. Lee, S. Sookhu, Y. Vodovotz, and G. F. Nieman. Chemically modified tetracycline 3 prevents acute respiratory distress syndrome in a porcine model of sepsis + ischemia/reperfusion-induced lung injury. Shock 37:424–432, 2012.

    Article  PubMed  CAS  Google Scholar 

  77. Roy, S., B. Sadowitz, P. Andrews, L. Gatto, W. Marx, G. Wang, L. Ge, D. Dean, X. Lin, M. Kuhn, A. Ghosh, J. Satalin, K. Snyder, Y. Vodovotz, G. Nieman, and N. Habashi. Early stabilizing alveolar ventilation prevents ARDS- a novel timing-based ventilatory intervention to prevent lung injury. J. Trauma., in press, 2012.

  78. Sakr, Y., J. L. Vincent, K. Reinhart, J. Groeneveld, A. Michalopoulos, C. L. Sprung, A. Artigas, and V. M. Ranieri. High tidal volume and positive fluid balance are associated with worse outcome in acute lung injury. Chest 128:3098–3108, 2005.

    Article  PubMed  Google Scholar 

  79. Schein, M., D. H. Wittmann, R. Holzheimer, and R. E. Condon. Hypothesis: compartmentalization of cytokines in intraabdominal infection [Review]. Surgery 119:694–700, 1996.

    Article  PubMed  CAS  Google Scholar 

  80. Senthil, M., M. Brown, D. Z. Xu, Q. Lu, E. Feketeova, and E. A. Deitch. Gut-lymph hypothesis of systemic inflammatory response syndrome/multiple-organ dysfunction syndrome: validating studies in a porcine model. J. Trauma 60:958–965, 2006.

    Article  PubMed  Google Scholar 

  81. Steinberg, S. M. Bacterial translocation: what it is and what it is not. Am. J. Surg. 186:301–305, 2003.

    Article  PubMed  Google Scholar 

  82. Steinberg, J., J. Halter, H. Schiller, L. Gatto, D. Carney, H. M. Lee, L. Golub, and G. Nieman. Chemically modified tetracycline prevents the development of septic shock and acute respiratory distress syndrome in a clinically applicable porcine model. Shock 24:348–356, 2005.

    Article  PubMed  CAS  Google Scholar 

  83. Steinberg, J., J. Halter, H. Schiller, L. Gatto, and G. Nieman. The development of acute respiratory distress syndrome after gut ischemia/reperfusion injury followed by fecal peritonitis in pigs: a clinically relevant model. Shock 23:129–137, 2005.

    Article  PubMed  Google Scholar 

  84. Suliburk, J., K. Helmer, F. Moore, and D. Mercer. The gut in systemic inflammatory response syndrome and sepsis. Enzyme systems fighting multiple organ failure. Eur. Surg. Res. 40:184–189, 2008.

    Article  PubMed  CAS  Google Scholar 

  85. Tjardes, T., and E. Neugebauer. Sepsis research in the next millennium: concentrate on the software rather than the hardware. Shock 17:1–8, 2002.

    Article  PubMed  Google Scholar 

  86. Torres, A., T. Bentley, J. Bartels, J. Sarkar, D. Barclay, R. Namas, G. Constantine, R. Zamora, J. C. Puyana, and Y. Vodovotz. Mathematical modeling of post-hemorrhage inflammation in mice: studies using a novel, computer-controlled, closed-loop hemorrhage apparatus. Shock 32:172–178, 2009.

    Article  PubMed  Google Scholar 

  87. Tracey, K. J. Reflex control of immunity. Nat. Rev. Immunol. 9:418–428, 2009.

    Article  PubMed  CAS  Google Scholar 

  88. van Haren, F. M., J. W. Sleigh, P. Pickkers, and J. G. van der Hoeven. Gastrointestinal perfusion in septic shock. Anaesth. Intensive Care 35:679–694, 2007.

    PubMed  Google Scholar 

  89. Vidal, M. G. Incidence and clinical effects of intra-abdominal hypertension in critically ill patients. Crit. Care Med. 36:1823–1831, 2008.

    Article  PubMed  Google Scholar 

  90. Vodovotz, Y. Translational systems biology of inflammation and healing. Wound Repair Regen 18:3–7, 2010.

    Article  PubMed  Google Scholar 

  91. Vodovotz, Y. At the interface between acute and chronic inflammation: insights from computational modeling. In: Chronic Inflammation: Nutritional & Therapeutic Interventions, edited by S. Roy, and C. Sen. Florence, KY: Taylor & Francis, 2012.

    Google Scholar 

  92. Vodovotz, Y., and G. An. Systems biology and inflammation. In: Systems Biology in Drug Discovery and Development: Methods and Protocols, edited by Q. Yan. Totowa, NJ: Springer, 2009, pp. 181–201.

    Google Scholar 

  93. Vodovotz, Y., C. C. Chow, J. Bartels, C. Lagoa, J. Prince, R. Levy, R. Kumar, J. Day, J. Rubin, G. Constantine, T. R. Billiar, M. P. Fink, and G. Clermont. In silico models of acute inflammation in animals. Shock 26:235–244, 2006.

    Article  PubMed  CAS  Google Scholar 

  94. Vodovotz, Y., G. Clermont, C. Chow, and G. An. Mathematical models of the acute inflammatory response. Curr. Opin. Crit. Care 10:383–390, 2004.

    Article  PubMed  Google Scholar 

  95. Vodovotz, Y., G. Constantine, J. Rubin, M. Csete, E. O. Voit, and G. An. Mechanistic simulations of inflammation: current state and future prospects. Math. Biosci. 217:1–10, 2009.

    Article  PubMed  Google Scholar 

  96. Vodovotz, Y., M. Csete, J. Bartels, S. Chang, and G. An. Translational systems biology of inflammation. PLoS Comput. Biol. 4:1–6, 2008.

    Article  Google Scholar 

  97. Weber, W., and M. Fussenegger. Emerging biomedical applications of synthetic biology. Nat. Rev. Genet. 13:21–35, 2012.

    CAS  Google Scholar 

  98. World Health Organization Report. Young People: Health Risks and Solutions. http://www.who.int/mediacentre/factsheets/fs345/en/index.html. Accessed January 31, 2012.

  99. Zakaria el, R., J. E. Campbell, J. C. Peyton, and R. N. Garrison. Postresuscitation tissue neutrophil infiltration is time-dependent and organ-specific. J. Surg. Res. 143:119–125, 2007.

    Article  PubMed  Google Scholar 

  100. Zakaria el, R., N. Li, and R. N. Garrison. Mechanisms of direct peritoneal resuscitation-mediated splanchnic hyperperfusion following hemorrhagic shock. Shock 27:436–442, 2007.

    Article  PubMed  Google Scholar 

  101. Zakaria el, R., N. Li, P. J. Matheson, and R. N. Garrison. Cellular edema regulates tissue capillary perfusion after hemorrhage resuscitation. Surgery 142:487–496, 2007.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Institutes of Health grants R01GM67240, P50GM53789, R33HL089082, R01HL080926, R01AI080799, R01HL76157, R01DC008290, and UO1DK072146; National Institute on Disability and Rehabilitation Research grant H133E070024; National Science Foundation grant 0830-370-V601; a Shared University Research Award from IBM, Inc.; and grants from the Commonwealth of Pennsylvania, the Pittsburgh Lifesciences Greenhouse, and the Pittsburgh Tissue Engineering Initiative/Department of Defense.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoram Vodovotz.

Additional information

Associate Editor Scott L. Diamond oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

An, G., Nieman, G. & Vodovotz, Y. Toward Computational Identification of Multiscale “Tipping Points” in Acute Inflammation and Multiple Organ Failure. Ann Biomed Eng 40, 2414–2424 (2012). https://doi.org/10.1007/s10439-012-0565-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0565-9

Keywords