Skip to main content
Log in

Transient Supplementation of Anabolic Growth Factors Rapidly Stimulates Matrix Synthesis in Engineered Cartilage

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The purpose of the presented work is to examine the response of engineered cartilage to a transient, 2-week application of anabolic growth factors compared to continuous exposure in in vitro culture. Immature bovine chondrocytes were suspended in agarose hydrogel and cultured for 28 days (Study 1) or 42 days (Study 2) in chondrogenic media with TGF-β1, TGF-β3, or IGF-I either added for only the first 14 days in culture or added to the media for the entire study period. In both studies, there were no statistical differences in tissue mechanical or biochemical properties between the growth factors on day 14. In Study 1, growth factor removal led to a significant and drastic increase in Young’s modulus and glycosaminoglycans content compared to continuously exposed controls on day 28. In Study 2, both TGF-β1 and β3 led to significantly higher mechanical properties and collagen content vs. IGF-I on day 42. These results indicate that the rapid rise in tissue properties (previously observed with TGF-β3 only) is not dependent on the type but rather the temporal application of the anabolic growth factor. These findings shed light on possible techniques to rapidly develop engineered cartilage tissue for the future treatment of osteoarthritis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Asanbaeva, A., K. Masuda, E. J. Thonar, S. M. Klisch, and R. L. Sah. Regulation of immature cartilage growth by IGF-I, TGF-beta1, BMP-7, and PDGF-AB: role of metabolic balance between fixed charge and collagen network. Biomech. Model. Mechanobiol. 7:263–276, 2008.

    Article  PubMed  Google Scholar 

  2. Ashcroft, G. S., M. A. Horan, and M. W. Ferguson. The effects of ageing on wound healing: immunolocalisation of growth factors and their receptors in a murine incisional model. J. Anat. 190(Pt 3):351–365, 1997.

    Article  PubMed  Google Scholar 

  3. Benya, P. D., and J. D. Shaffer. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 30:215–224, 1982.

    Article  PubMed  CAS  Google Scholar 

  4. Bian, L. M., S. L. Angione, E. G. Lima, K. W. Ng, G. A. Ateshian, and C. T. Hung. Tissue-engineered cartilage constructs using mature bovine chondrocytes: effects of temporal exposure to growth factors and dynamic deformational loading. Trans. Orthop. Res. Soc. 32:1480, 2007

    Google Scholar 

  5. Blunk, T., A. L. Sieminski, K. J. Gooch, D. L. Courter, A. P. Hollander, A. M. Nahir, R. Langer, G. Vunjak-Novakovic, and L. E. Freed. Differential effects of growth factors on tissue-engineered cartilage. Tissue Eng. 8:73–84, 2002.

    Article  PubMed  CAS  Google Scholar 

  6. Bos, P. K., G. J. van Osch, D. A. Frenz, J. A. Verhaar, and H. L. Verwoerd-Verhoef. Growth factor expression in cartilage wound healing: temporal and spatial immunolocalization in a rabbit auricular cartilage wound model. Osteoarthr. Cartil. 9:382–389, 2001.

    Article  PubMed  CAS  Google Scholar 

  7. Brittberg, M., A. Lindahl, A. Nilsson, C. Ohlsson, O. Isaksson, and L. Peterson. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N. Engl. J. Med. 331:889–895, 1994.

    Article  PubMed  CAS  Google Scholar 

  8. Buschmann, M. D., Y. A. Gluzband, A. J. Grodzinsky, J. H. Kimura, and E. B. Hunziker. Chondrocytes in agarose culture synthesize a mechanically functional extracellular matrix. J. Orthop. Res. 10:745–758, 1992.

    Article  PubMed  CAS  Google Scholar 

  9. Byers, B. A., R. L. Mauck, I. E. Chiang, and R. S. Tuan. Transient exposure to transforming growth factor beta 3 under serum-free conditions enhances the biomechanical and biochemical maturation of tissue-engineered cartilage. Tissue Eng. A 14:1821–1834, 2008.

    Article  CAS  Google Scholar 

  10. Farndale, R. W., C. A. Sayers, and A. J. Barrett. A direct spectrophotometric microassay for sulfated glycosaminoglycans in cartilage cultures. Connect. Tissue Res. 9:247–248, 1982.

    Article  PubMed  CAS  Google Scholar 

  11. Felson, D. T., R. C. Lawrence, P. A. Dieppe, R. Hirsch, C. G. Helmick, J. M. Jordan, R. S. Kington, N. E. Lane, M. C. Nevitt, Y. Zhang, M. Sowers, T. McAlindon, T. D. Spector, A. R. Poole, S. Z. Yanovski, G. Ateshian, L. Sharma, J. A. Buckwalter, K. D. Brandt, and J. F. Fries. Osteoarthritis: new insights. Part 1. The disease and its risk factors. Ann. Intern. Med. 133:635–646, 2000.

    PubMed  CAS  Google Scholar 

  12. Goldring, M. B., K. Tsuchimochi, and K. Ijiri. The control of chondrogenesis. J. Cell. Biochem. 97:33–44, 2006.

    Article  PubMed  CAS  Google Scholar 

  13. Gooch, K. J., T. Blunk, D. L. Courter, A. L. Sieminski, P. M. Bursac, G. Vunjak-Novakovic, and L. E. Freed. IGF-I and mechanical environment interact to modulate engineered cartilage development. Biochem. Biophys. Res. Commun. 286:909–915, 2001.

    Article  PubMed  CAS  Google Scholar 

  14. Guilak, F., D. L. Butler, and S. A. Goldstein. Functional tissue engineering: the role of biomechanics in articular cartilage repair. Clin. Orthop. S295–S305, 2001.

  15. Hangody, L., and P. Fules. Autologous osteochondral mosaicplasty for the treatment of full-thickness defects of weight-bearing joints: ten years of experimental and clinical experience. J. Bone Joint Surg. Am. 85-A(Suppl. 2):25–32, 2003.

    PubMed  Google Scholar 

  16. Hollander, A. P., T. F. Heathfield, C. Webber, Y. Iwata, R. Bourne, C. Rorabeck, and A. R. Poole. Increased damage to type II collagen in osteoarthritic articular cartilage detected by a new immunoassay. J. Clin. Invest. 93:1722–1732, 1994.

    Article  PubMed  CAS  Google Scholar 

  17. Honn, K. V., J. A. Singley, and W. Chavin. Fetal bovine serum: a multivariate standard. Proc. Soc. Exp. Biol. Med. 149:344–347, 1975.

    PubMed  CAS  Google Scholar 

  18. Huang, C. Y., M. A. Soltz, M. Kopacz, V. C. Mow, and G. A. Ateshian. Experimental verification of the roles of intrinsic matrix viscoelasticity and tension-compression nonlinearity in the biphasic response of cartilage. J. Biomech. Eng. 125:84–93, 2003.

    Article  PubMed  Google Scholar 

  19. Kalpakci, K. N., E. J. Kim, and K. A. Athanasiou. Assessment of growth factor treatment on fibrochondrocyte and chondrocyte co-cultures for TMJ fibrocartilage engineering. Acta Biomater. 7:1710–1718, 2011.

    Article  PubMed  CAS  Google Scholar 

  20. Kempson, G. E. Age-related changes in the tensile properties of human articular cartilage: a comparative study between the femoral head of the hip joint and the talus of the ankle joint. Biochim. Biophys. Acta 1075:223–230, 1991.

    PubMed  CAS  Google Scholar 

  21. Kim, M., X. Bi, W. E. Horton, R. G. Spencer, and N. P. Camacho. Fourier transform infrared imaging spectroscopic analysis of tissue engineered cartilage: histologic and biochemical correlations. J. Biomed. Opt. 10:031105, 2005.

    Article  PubMed  Google Scholar 

  22. Lima, E. G., L. Bian, K. W. Ng, R. L. Mauck, B. A. Byers, R. S. Tuan, G. A. Ateshian, and C. T. Hung. The beneficial effect of delayed compressive loading on tissue-engineered cartilage constructs cultured with TGF-beta3. Osteoarthr. Cartil. 15:1025–1033, 2007.

    Article  PubMed  CAS  Google Scholar 

  23. Lima, E. G., A. R. Tan, T. Tai, L. Bian, A. M. Stoker, G. A. Ateshian, J. L. Cook, and C. T. Hung. Differences in interleukin-1 response between engineered and native cartilage. Tissue Eng. A 14:1721–1730, 2008.

    Article  CAS  Google Scholar 

  24. Mankin, H. J., V. C. Mow, J. A. Buckwalter, J. P. Iannotti, and A. Ratcliffe. Articular cartilage structure, composition, and function. In: Orthopaedic Basic Science: Biology and Biomechanics of the Musculoskeletal System, edited by J. A. Buckwalter, T. A. Einhorn, and S. R. Simon. Rosemont, IL: American Academy of Orthopaedic Surgeons, 2000, pp. 443–470.

    Google Scholar 

  25. Mauck, R. L., S. B. Nicoll, S. L. Seyhan, G. A. Ateshian, and C. T. Hung. Synergistic action of growth factors and dynamic loading for articular cartilage tissue engineering. Tissue Eng. 9:597–611, 2003.

    Article  PubMed  CAS  Google Scholar 

  26. Mauck, R. L., M. A. Soltz, C. C. Wang, D. D. Wong, P. H. Chao, W. B. Valhmu, C. T. Hung, and G. A. Ateshian. Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J. Biomech. Eng. 122:252–260, 2000.

    Article  PubMed  CAS  Google Scholar 

  27. Mauck, R. L., C. C. Wang, E. S. Oswald, G. A. Ateshian, and C. T. Hung. The role of cell seeding density and nutrient supply for articular cartilage tissue engineering with deformational loading. Osteoarthr. Cartil. 11:879–890, 2003.

    Article  PubMed  CAS  Google Scholar 

  28. Mithoefer, K., T. McAdams, R. J. Williams, P. C. Kreuz, and B. R. Mandelbaum. Clinical efficacy of the microfracture technique for articular cartilage repair in the knee: an evidence-based systematic analysis. Am. J. Sports Med. 37:2053–2063, 2009.

    Article  PubMed  Google Scholar 

  29. Moseley, J. B., Jr., A. F. Anderson, J. E. Browne, B. Mandelbaum, L. J. Micheli, F. Fu, and C. Erggelet. Long-term durability of autologous chondrocyte implantation: a multicenter, observational study in U.S. patients. Am. J. Sports Med. 38:238–246, 2010.

    Article  PubMed  Google Scholar 

  30. Mow, V. C., G. A. Ateshian, and A. Ratcliffe. Anatomic form and biomechanical properties of articular cartilage of the knee joint. In: Biology and Biomechanics of the Traumatized Synovial Joint. The Knee as a Model, edited by G. A. M. Finerman, and F. R. Noyes. Rosemont, IL: AAOS, 1992, pp. 55–81.

    Google Scholar 

  31. Ng, K. W., J. G. DeFrancis, L. E. Kugler, T. A. Kelly, M. M. Ho, C. J. O’Conor, G. A. Ateshian, and C. T. Hung. Amino acids supply in culture media is not a limiting factor in the matrix synthesis of engineered cartilage tissue. Amino Acids 35:433–438, 2008.

    Article  PubMed  CAS  Google Scholar 

  32. Ng, K. W., E. G. Lima, L. Bian, C. J. O’Conor, P. S. Jayabalan, A. M. Stoker, K. Kuroki, C. R. Cook, G. A. Ateshian, J. L. Cook, and C. T. Hung. Passaged adult chondrocytes can form engineered cartilage with functional mechanical properties: a canine model. Tissue Eng. A 16:1041–1051, 2010.

    Article  CAS  Google Scholar 

  33. Ng, K. W., C. J. O’Conor, E. G. Lima, S. B. Lo, G. A. Ateshian, J. L. Cook, and C. T. Hung. Primed mature canine chondrocytes can develop an engineered cartilage tissue with physiologic properties. Trans. Orthop. Res. Soc. 31:599, 2008.

    Google Scholar 

  34. Ng, K. W., C. C. Wang, R. L. Mauck, T. A. Kelly, N. O. Chahine, K. D. Costa, G. A. Ateshian, and C. T. Hung. A layered agarose approach to fabricate depth-dependent inhomogeneity in chondrocyte-seeded constructs. J. Orthop. Res. 23:134–141, 2005.

    Article  PubMed  Google Scholar 

  35. Pei, M., J. Seidel, G. Vunjak-Novakovic, and L. E. Freed. Growth factors for sequential cellular de- and re-differentiation in tissue engineering. Biochem. Biophys. Res. Commun. 294:149–154, 2002.

    Article  PubMed  CAS  Google Scholar 

  36. Price, P. J., and E. A. Gregory. Relationship between in vitro growth promotion and biophysical and biochemical properties of the serum supplement. In Vitro 18:576–584, 1982.

    Article  PubMed  CAS  Google Scholar 

  37. Riesle, J., A. P. Hollander, R. Langer, L. E. Freed, and G. Vunjak-Novakovic. Collagen in tissue-engineered cartilage: types, structure, and crosslinks. J. Cell. Biochem. 71:313–327, 1998.

    Article  PubMed  CAS  Google Scholar 

  38. Scuderi, G. R., and J. N. Insall. Total knee arthroplasty. Current clinical perspectives. Clin. Orthop. Relat. Res. 276:26–32, 1992.

    PubMed  Google Scholar 

  39. Selmi, T. A., P. Verdonk, P. Chambat, F. Dubrana, J. F. Potel, L. Barnouin, and P. Neyret. Autologous chondrocyte implantation in a novel alginate-agarose hydrogel: outcome at two years. J. Bone Joint Surg. Br. 90:597–604, 2008.

    Article  PubMed  CAS  Google Scholar 

  40. Shah, M., D. M. Foreman, and M. W. Ferguson. Neutralisation of TGF-beta 1 and TGF-beta 2 or exogenous addition of TGF-beta 3 to cutaneous rat wounds reduces scarring. J. Cell Sci. 108(Pt 3):985–1002, 1995.

    PubMed  CAS  Google Scholar 

  41. Slover, J. D., and H. E. Rubash. Hip resurfacing arthroplasty: time to consider it again? Instr. Course Lect. 57:267–271, 2008.

    PubMed  Google Scholar 

  42. Solheim, E., J. Hegna, J. Oyen, O. K. Austgulen, T. Harlem, and T. Strand. Osteochondral autografting (mosaicplasty) in articular cartilage defects in the knee: results at 5 to 9 years. Knee 17:84–87, 2010.

    Article  PubMed  Google Scholar 

  43. Steadman, J. R., W. G. Rodkey, and J. J. Rodrigo. Microfracture: surgical technique and rehabilitation to treat chondral defects. Clin. Orthop. Relat. Res. S362–S369, 2001.

  44. Stegemann, H., and K. Stalder. Determination of hydroxyproline. Clin. Chim. Acta 18:267–273, 1967.

    Article  PubMed  CAS  Google Scholar 

  45. Theoret, C. L., S. M. Barber, T. N. Moyana, and J. R. Gordon. Expression of transforming growth factor beta(1), beta(3), and basic fibroblast growth factor in full-thickness skin wounds of equine limbs and thorax. Vet. Surg. 30:269–277, 2001.

    Article  PubMed  CAS  Google Scholar 

  46. van Osch, G. J., W. B. van den Berg, E. B. Hunziker, and H. J. Hauselmann. Differential effects of IGF-1 and TGF beta-2 on the assembly of proteoglycans in pericellular and territorial matrix by cultured bovine articular chondrocytes. Osteoarthr. Cartil. 6:187–195, 1998.

    Article  PubMed  Google Scholar 

  47. van Osch, G. J., S. W. van der Veen, P. Buma, and H. L. Verwoerd-Verhoef. Effect of transforming growth factor-beta on proteoglycan synthesis by chondrocytes in relation to differentiation stage and the presence of pericellular matrix. Matrix Biol. 17:413–424, 1998.

    Article  PubMed  Google Scholar 

  48. Weisser, J., B. Rahfoth, A. Timmermann, T. Aigner, R. Brauer, and K. von der Mark. Role of growth factors in rabbit articular cartilage repair by chondrocytes in agarose. Osteoarthr. Cartil. 9(Suppl. A):S48–S54, 2001.

    Article  PubMed  Google Scholar 

  49. Williams, G. M., K. J. Dills, C. R. Flores, M. E. Stender, K. M. Stewart, L. M. Nelson, A. C. Chen, K. Masuda, S. J. Hazelwood, S. M. Klisch, and R. L. Sah. Differential regulation of immature articular cartilage compressive moduli and Poisson’s ratios by in vitro stimulation with IGF-1 and TGF-beta1. J. Biomech. 43:2501–2507, 2010.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Research funding was provided by the National Institutes of Health (AR46568, AR52871, and AR53530).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clark T. Hung.

Additional information

Associate Editor Kent Leach oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ng, K.W., O’Conor, C.J., Kugler, L.E. et al. Transient Supplementation of Anabolic Growth Factors Rapidly Stimulates Matrix Synthesis in Engineered Cartilage. Ann Biomed Eng 39, 2491–2500 (2011). https://doi.org/10.1007/s10439-011-0356-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0356-8

Keywords

Navigation