Skip to main content
Log in

High-Resolution Measurement of the Unsteady Velocity Field to Evaluate Blood Damage Induced by a Mechanical Heart Valve

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

We investigate the potential of prosthetic heart valves to generate abnormal flow and stress patterns, which can contribute to platelet activation and lysis according to blood damage accumulation mechanisms. High-resolution velocity measurements of the unsteady flow field, obtained with a standard particle image velocimetry system and a scaled-up model valve, are used to estimate the shear stresses arising downstream of the valve, accounting for flow features at scales less than one order of magnitude larger than blood cells. Velocity data at effective spatial and temporal resolution of 60 μm and 1.75 kHz, respectively, enabled accurate extraction of Lagrangian trajectories and loading histories experienced by blood cells. Non-physiological stresses up to 10 Pa were detected, while the development of vortex flow in the wake of the valve was observed to significantly increase the exposure time, favouring platelet activation. The loading histories, combined with empirical models for blood damage, reveal that platelet activation and lysis are promoted at different stages of the heart cycle. Shear stress and blood damage estimates are shown to be sensitive to measurement resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. Alemu, Y., and D. Bluestein. Flow-induced platelet activation and damage accumulation in a mechanical heart valve: numerical studies. Artif. Organs 31(9):677–688, 2007.

    Article  PubMed  Google Scholar 

  2. Apel, J., R. Paul, S. Klaus, T. Siess, and H. Reul. Assessment of hemolysis related quantities in a microaxial blood pump by computational fluid dynamics. Artif. Organs 25(5):341–347, 2001.

    Article  PubMed  CAS  Google Scholar 

  3. Balducci, A., M. Grigioni, G. Querzoli, G. P. Romano, C. Daniele, G. D’Avenio, and V. Barbaro. Investigation of the flow field downstream of an artificial heart valve by means of PIV and PTV. Exp. Fluids 36(1):204–213, 2004.

    Article  Google Scholar 

  4. Baldwin, J. T., S. Deutsch, D. B. Geselowitz, and J. M. Tarbell. LDA measurements of mean velocity and Reynolds stress fields within an artificial heart ventricle. J. Biomech. Eng. 116(2):190–200, 1994.

    Article  PubMed  CAS  Google Scholar 

  5. Bellofiore, A., E. M. Donohue, and N. J. Quinlan. Scale-up of an unsteady flow-field for enhanced spatial and temporal resolution of PIV measurements: application to leaflet wake flow in a mechanical heart valve. Exp. Fluids. doi:10.1007/s00348-010-1038-2, 2011.

  6. Bluestein, D., K. B. Chandran, and K. B. Manning. Towards non-thrombogenic performance of blood recirculating devices. Ann. Biomed. Eng. 38(3):1236–1256, 2010.

    Article  PubMed  CAS  Google Scholar 

  7. Bluestein, D., Y. M. Li, and I. B. Krukenkamp. Free emboli formation in the wake of bi-leaflet mechanical heart valves and the effects of implantation techniques. J. Biomech. 35(12):1533–1540, 2002.

    Article  PubMed  CAS  Google Scholar 

  8. Bluestein, D., E. Rambod, and M. Gharib. Vortex shedding as a mechanism for free emboli formation in mechanical heart valves. J. Biomech. Eng. 122(2):125–134, 2000.

    Article  PubMed  CAS  Google Scholar 

  9. Brown, C. H., L. B. Leverett, C. W. Lewis, C. P. Alfrey, and J. D. Hellums. Morphological, biochemical, and functional changes in human platelets subjected to shear stress. J. Lab. Clin. Med. 86(3):462–471, 1975.

    PubMed  Google Scholar 

  10. Brucker, C., U. Steinseifer, W. Schroder, and H. Reul. Unsteady flow through a new mechanical heart valve prosthesis analysed by digital particle image velocimetry. Meas. Sci. Technol. 13(7):1043–1049, 2002.

    Article  CAS  Google Scholar 

  11. Cannegieter, S. C., F. R. Rosendaal, and E. Brit. Thromboembolic and bleeding complications in patients with mechanical heart valve prostheses. Circulation 89(2):635–641, 1994.

    PubMed  CAS  Google Scholar 

  12. Dasi, L. P., L. Ge, H. Simon, F. Sotiropoulos, and A. P. Yoganathan. Vorticity dynamics of a bileaflet mechanical heart valve in an axisymmetric aorta. Phys. Fluids 19(6):067105, 2007.

    Article  Google Scholar 

  13. De Tullio, M. D., A. Cristallo, E. Balaras, and R. Verzicco. Direct numerical simulation of the pulsatile flow through an aortic bileaflet mechanical heart valve. J. Fluid Mech. 622:259–290, 2009.

    Article  Google Scholar 

  14. Dumont, K., J. Vierendeels, R. Kaminsky, G. van Nooten, P. Verdonck, and D. Bluestein. Comparison of the hemodynamic and thrombogenic performance of two bileaflet mechanical heart valves using a CFD/FSI model. J. Biomech. Eng. 129(4):558–565, 2007.

    Article  PubMed  Google Scholar 

  15. Ellis, J. T., T. M. Wick, and A. P. Yoganathan. Prosthesis-induced hemolysis: mechanisms and quantification of shear stress. J. Heart Valve Dis. 7(4):376–386, 1998.

    PubMed  CAS  Google Scholar 

  16. Ge, L., L. P. Dasi, F. Sotiropoulos, and A. P. Yoganathan. Characterization of hemodynamic forces induced by mechanical heart valves: Reynolds vs. viscous stresses. Ann. Biomed. Eng. 36(2):276–297, 2008.

    Article  PubMed  Google Scholar 

  17. Giersiepen, M., L. J. Wurzinger, R. Opitz, and H. Reul. Estimation of shear stress-related blood damage in heart valve prostheses—in vitro comparison of 25 aortic valves. Int. J. Artif. Organs 13(5):300–306, 1990.

    PubMed  CAS  Google Scholar 

  18. Goubergrits, L. Numerical modeling of blood damage: current status, challenges and future prospects. Expert. Rev. Med. Devices 3(5):527–531, 2006.

    Article  PubMed  Google Scholar 

  19. Goubergrits, L., and K. Affeld. Numerical estimation of blood damage in artificial organs. Artif. Organs 28(5):499–507, 2004.

    Article  PubMed  Google Scholar 

  20. Grigioni, M., C. Daniele, G. D’Avenio, and V. Barbaro. The influence of the leaflets’ curvature on the flow field in two bileaflet prosthetic heart valves. J. Biomech. 34(5):613–621, 2001.

    Article  PubMed  CAS  Google Scholar 

  21. Grigioni, M., C. Daniele, U. Morbiducci, G. D’Avenio, G. Di Benedetto, and V. Barbaro. The power-law mathematical model for blood damage prediction: analytical developments and physical inconsistencies. Artif. Organs 28(5):467–475, 2004.

    Article  PubMed  Google Scholar 

  22. Grigioni, M., U. Morbiducci, G. D’Avenio, G. Di Benedetto, and C. Del Gaudio. A novel formulation for blood trauma prediction by a modified power-law mathematical model. Biomech. Model Mechanobiol. 4(4):249–260, 2005.

    Article  PubMed  Google Scholar 

  23. Guivier-Curien, C., V. Deplano, and E. Bertrand. Validation of a numerical 3-D fluidstructure interaction model for a prosthetic valve based on experimental PIV measurements. Med. Eng. Phys. 31(8):986–993, 2009.

    Article  PubMed  Google Scholar 

  24. Kaminsky, R., S. Kallweit, M. Rossi, U. Morbiducci, L. Scalise, P. Verdonck, and E. Tomasini. PIV measurements of flows in artificial heart valves. In: Particle Image Velocimetry: New Developments, Recent Applications, edited by A. Schroder. Berlin: Springer, 2008, pp. 55–72.

    Google Scholar 

  25. Kroll, M. H., J. D. Hellums, L. V. McIntire, A. I. Schafer, and J. L. Moake. Platelets and shear stress. Blood 88(5):1525–1541, 1996.

    PubMed  CAS  Google Scholar 

  26. Leverett, L. B., J. D. Hellums, C. P. Alfrey, and E. C. Lynch. Red blood cell damage by shear stress. Biophys. J. 12(3):257–273, 1972.

    Article  PubMed  CAS  Google Scholar 

  27. Li, C. P., C. W. Lo, and P. C. Lu. Estimation of viscous dissipative stresses induced by a mechanical heart valve using PIV data. Ann. Biomed. Eng. 38(3):903–916, 2010.

    Article  PubMed  Google Scholar 

  28. Liu, J. S., P. C. Lu, and S. H. Chu. Turbulence characteristics downstream of bileaflet aortic valve prostheses. J. Biomech. Eng. 122(2):118–124, 2000.

    Article  PubMed  CAS  Google Scholar 

  29. Luff, J. D., T. Drouillard, A. M. Rompage, M. A. Linne, and J. R. Hertzberg. Experimental uncertainties associated with particle image velocimetry (PIV) based vorticity algorithms. Exp. Fluids 26(1):36–54, 1999.

    Article  CAS  Google Scholar 

  30. Manning, K. F., V. Kini, A. A. Fontaine, S. Deutsch, and J. M. Tarbell. Regurgitant flow field characteristics of the St. Jude bileaflet mechanical heart valve under physiologic pulsatile flow using particle image velocimetry. Artif. Organs 27(9):840–846, 2003.

    Article  PubMed  Google Scholar 

  31. Mecozzi, G., A. D. Milano, M. De Carlo, F. Sorrentino, S. Pratali, C. Nardi, and U. Bortolotti. Intravascular hemolysis in patients with new-generation prosthetic heart valves: a prospective study. J. Thorac. Cardiovasc. Surg. 123(3):550–556, 2002.

    Article  PubMed  CAS  Google Scholar 

  32. Morbiducci, U., R. Ponzini, M. Nobili, D. Massai, F. M. Montevecchi, D. Bluestein, and A. Redaelli. Blood damage safety of prosthetic heart valves. Shear-induced platelet activation and local flow dynamics: a fluid–structure interaction approach. J. Biomech. 42(12):1952–1960, 2009.

    Article  PubMed  Google Scholar 

  33. Nobili, M., J. Sheriff, U. Morbiducci, A. Redaelli, and D. Bluestein. Platelet activation due to hemodynamic shear stresses: damage accumulation model and comparison to in vitro measurements. ASAIO J. 54(1):64–72, 2008.

    Article  PubMed  Google Scholar 

  34. Paul, R., J. Apel, S. Klaus, F. Schügner, P. Schwindke, and H. Reul. Shear stress related blood damage in laminar couette flow. Artif. Organs 27(6):517–529, 2003.

    Article  PubMed  Google Scholar 

  35. Quinlan, N. J., and P. Dooley. Models of flow-induced loading on blood cells in laminar and turbulent flow, with application to cardiovascular device flow. Ann. Biomed. Eng. 35(8):1347–1356, 2007.

    Article  PubMed  Google Scholar 

  36. Raz, S., S. Einav, Y. Alemu, and D. Bluestein. DPIV prediction of flow induced platelet activation—comparison to numerical predictions. Ann. Biomed. Eng. 35(4):493–504, 2007.

    Article  PubMed  Google Scholar 

  37. Shadden, S. C., M. Astorino, and J. F. Gerbeau. Computational analysis of an aortic valve jet with Lagrangian coherent structures. Chaos 20(1):017512, 2010.

    Article  PubMed  Google Scholar 

  38. Sheriff, J., D. Bluestein, G. Girdhar, and J. Jesty. High-shear stress sensitizes platelets to subsequent low-shear conditions. Ann. Biomed. Eng. 38(4):1442–1450, 2010.

    Article  PubMed  Google Scholar 

  39. Steegers, A., R. Paul, H. Reul, and G. Rau. Leakage flow at mechanical heart valve prostheses: improved washout or increased blood damage? J. Heart Valve Dis. 8(3):312–323, 1999.

    PubMed  CAS  Google Scholar 

  40. Vongpatanasin, W., L. D. Hillis, and R. A. Lange. Prosthetic heart valves. N. Engl. J. Med. 335(6):407–416, 1996.

    Article  PubMed  CAS  Google Scholar 

  41. Wurzinger, L. J., R. Opitz, P. Blasberg, and H. Schmid-Schönbein. Platelet and coagulation parameters following millisecond exposure to laminar shear stress. Thromb. Haemost. 54(2):381–386, 1985.

    PubMed  CAS  Google Scholar 

  42. Yeung, P. K. Lagrangian investigations of turbulence. Annu. Rev. Fluid Mech. 34(1):115–142, 2002.

    Article  Google Scholar 

  43. Yoganathan, A. P., T. M. Wick, and H. Reul. The influence of flow characteristics of prosthetic valves on thrombus formation. In: Thrombosis, Embolism and Bleeding, edited by E. Buchart. London: IRC Publishers, 1992, pp. 123–148.

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of Science Foundation Ireland (SFI) under the Research Frontiers Programme (grant code 07/RFP/ENMF450).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Bellofiore.

Additional information

Associate Editor Kerry Hourigan oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bellofiore, A., Quinlan, N.J. High-Resolution Measurement of the Unsteady Velocity Field to Evaluate Blood Damage Induced by a Mechanical Heart Valve. Ann Biomed Eng 39, 2417–2429 (2011). https://doi.org/10.1007/s10439-011-0329-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0329-y

Keywords

Navigation