Skip to main content

Advertisement

Log in

Mechanical and Structural Contribution of Non-Fibrillar Matrix in Uniaxial Tension: A Collagen-Agarose Co-Gel Model

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The mechanical role of non-fibrillar matrix and the nature of its interaction with the collagen network in soft tissues remain poorly understood, in part because of the lack of a simple experimental model system to quantify these interactions. This study’s objective was to examine mechanical and structural properties of collagen-agarose co-gels, utilized as a simplified model system, to understand better the relationships between the collagen network and non-fibrillar matrix. We hypothesized that the presence of agarose would have a pronounced effect on microstructural reorganization and mechanical behavior. Samples fabricated from gel solutions containing 1.0 mg/mL collagen and 0, 0.125, or 0.25% w/v agarose were evaluated via scanning electron microscopy, incremental tensile stress-relaxation tests, and polarized light imaging. While the incorporation of agarose did not dramatically alter collagen network morphology, agarose led to concentration-dependent changes in mechanical and structural properties. Specifically, resistance of co-gels to volume change corresponded with differences in fiber reorientation and elastic/viscoelastic mechanics. Results demonstrate strong relationships between tissue properties and offer insight into behavior of tissues of varying Poisson’s ratio and fiber kinematics. Results also suggest that non-fibrillar material may have significant effects on properties of artificial and native tissues even in tension, which is generally assumed to be collagen dominated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Batorsky, A., et al. Encapsulation of adult human mesenchymal stem cells within collagen-agarose microenvironments. Biotechnol. Bioeng. 92(4):492–500, 2005.

    Article  PubMed  CAS  Google Scholar 

  2. Billiar, K. L., and M. S. Sacks. A method to quantify the fiber kinematics of planar tissues under biaxial stretch. J. Biomech. 30(7):753–756, 1997.

    Article  PubMed  CAS  Google Scholar 

  3. Buckwalter, J. A. Musculoskeletal soft tissues. In: Orthopaedic Surgery: The Essentials, edited by M. Baratz, A. D. Watson, and J. E. Imbriglia. New York, NY: Thieme, 1999.

    Google Scholar 

  4. Chandran, P. L., and V. H. Barocas. Microstructural mechanics of collagen gels in confined compression: poroelasticity, viscoelasticity, and collapse. J. Biomech. Eng. 126(2):152–166, 2004.

    Article  PubMed  Google Scholar 

  5. Chandran, P. L., and V. H. Barocas. Affine versus non-affine fibril kinematics in collagen networks: theoretical studies of network behavior. J. Biomech. Eng. 128(2):259–270, 2006.

    Article  PubMed  Google Scholar 

  6. Cheng, V. W. T., and H. R. C. Screen. The micro-structural strain response of tendon. J. Mater. Sci. 42(21):8957–8965, 2007.

    Article  CAS  Google Scholar 

  7. Elliott, D. M., and L. A. Setton. A linear material model for fiber-induced anisotropy of the anulus fibrosus. J. Biomech. Eng. 122(2):173–179, 2000.

    Article  PubMed  CAS  Google Scholar 

  8. Gilbert, T. W., et al. Fiber kinematics of small intestinal submucosa under biaxial and uniaxial stretch. J. Biomech. Eng. 128(6):890–898, 2006.

    Article  PubMed  Google Scholar 

  9. Guerin, H. A., and D. M. Elliott. The role of fiber-matrix interactions in a nonlinear fiber-reinforced strain energy model of tendon. J. Biomech. Eng. 127(2):345–350, 2005.

    Article  PubMed  Google Scholar 

  10. Guerin, H. A., and D. M. Elliott. Degeneration affects the fiber reorientation of human annulus fibrosus under tensile load. J. Biomech. 39(8):1410–1418, 2006.

    Article  PubMed  Google Scholar 

  11. Hewitt, J., et al. Regional material properties of the human hip joint capsule ligaments. J. Orthop. Res. 19(3):359–364, 2001.

    Article  PubMed  CAS  Google Scholar 

  12. Jones, C. P. Living beyond our “means”: new methods for comparing distributions. Am. J. Epidemiol. 146(12):1056–1066, 1997.

    PubMed  CAS  Google Scholar 

  13. Knapp, D., et al. Rheology of reconstituted type I collagen gel in confined compression. J. Rheol. 41:971, 1997.

    Article  CAS  Google Scholar 

  14. Krishnan, L., et al. Design and application of a test system for viscoelastic characterization of collagen gels. Tissue Eng. 10(1–2):241–252, 2004.

    Article  PubMed  CAS  Google Scholar 

  15. Lake, S. P. Anisotropic, Inhomogeneous and Nonlinear Structure-Function of Human Supraspinatus Tendon. Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 2009.

  16. Lake, S. P. et al. Evaluation of affine fiber kinematics in human supraspinatus tendon using quantitative projection plot analysis. Biomech. Model Mechanobiol. 2011 (in press).

  17. Lanir, Y. A structural theory for the homogeneous biaxial stress-strain relationships in flat collagenous tissues. J. Biomech. 12(6):423–436, 1979.

    Article  PubMed  CAS  Google Scholar 

  18. Laurencin, C. T., et al. Tissue engineering: orthopedic applications. Annu. Rev. Biomed. Eng. 1:19–46, 1999.

    Article  PubMed  CAS  Google Scholar 

  19. Lund, A. W., et al. Osteogenic differentiation of mesenchymal stem cells in defined protein beads. J. Biomed. Mater. Res. B 87(1):213–221, 2008.

    Google Scholar 

  20. Lynch, H. A., et al. Effect of fiber orientation and strain rate on the nonlinear uniaxial tensile material properties of tendon. J. Biomech. Eng. 125(5):726–731, 2003.

    Article  PubMed  Google Scholar 

  21. Malvern, L. E. Introduction to the Mechanics of a Continuous Medium. Englewood Cliffs, NJ: Prentice-Hall, 1969.

    Google Scholar 

  22. Nomura, Y., Y. Ishii, and K. Takahashi. Control of collagen molecular assembly with anionic polysaccharides. Biosci. Biotechnol. Biochem. 73(4):926–929, 2009.

    Article  PubMed  CAS  Google Scholar 

  23. Normand, V., et al. New insight into agarose gel mechanical properties. Biomacromolecules 1(4):730–738, 2001.

    Article  Google Scholar 

  24. O’Connell, G. D., H. L. Guerin, and D. M. Elliott. Theoretical and uniaxial experimental evaluation of human annulus fibrosus degeneration. J. Biomech. Eng. 131(11):111007, 2009.

    Article  PubMed  Google Scholar 

  25. Reese, S. P., S. A. Maas, and J. A. Weiss. Micromechanical models of helical superstructures in ligament and tendon fibers predict large poisson’s ratios. J. Biomech. 43(7):1394–1400, 2010.

    Article  PubMed  Google Scholar 

  26. Roeder, B. A., et al. Tensile mechanical properties of three-dimensional type I collagen extracellular matrices with varied microstructure. J. Biomech. Eng. 124(2):214–222, 2002.

    Article  PubMed  Google Scholar 

  27. Schwartz, M. H., P. H. Leo, and J. L. Lewis. A microstructural model for the elastic response of articular cartilage. J. Biomech. 27(7):865–873, 1994.

    Article  PubMed  CAS  Google Scholar 

  28. Shirazi, R., and A. Shirazi-Adl. Deep vertical collagen fibrils play a significant role in mechanics of articular cartilage. J. Orthop. Res. 26(5):608–615, 2008.

    Article  PubMed  CAS  Google Scholar 

  29. Stylianopoulos, T., and V. H. Barocas. Multiscale, structure-based modeling for the elastic mechanical behavior of arterial walls. J. Biomech. Eng. 129(4):611–618, 2007.

    Article  PubMed  Google Scholar 

  30. Stylianopoulos, T., and V. H. Barocas. Volume-averaging theory for the study of the mechanics of collagen networks. Comput. Methods Biomech. Biomed. Eng. 196(31–32):2981–2990, 2007.

    Google Scholar 

  31. Thomopoulos, S., G. M. Fomovsky, and J. W. Holmes. The development of structural and mechanical anisotropy in fibroblast populated collagen gels. J. Biomech. Eng. 127(5):742–750, 2005.

    Article  PubMed  Google Scholar 

  32. Tower, T. T., M. R. Neidert, and R. T. Tranquillo. Fiber alignment imaging during mechanical testing of soft tissues. Ann. Biomed. Eng. 30(10):1221–1233, 2002.

    Article  PubMed  Google Scholar 

  33. Ulrich, T. A., et al. Probing cellular mechanobiology in three-dimensional culture with collagen-agarose matrices. Biomaterials 31(7):1875–1884, 2010.

    Article  PubMed  CAS  Google Scholar 

  34. Wagner, D. R., and J. C. Lotz. Theoretical model and experimental results for the nonlinear elastic behavior of human annulus fibrosus. J. Orthop. Res. 22(4):901–909, 2004.

    Article  PubMed  Google Scholar 

  35. Wang, J. H. Mechanobiology of tendon. J. Biomech. 39(9):1563–1582, 2006.

    Article  PubMed  Google Scholar 

  36. Weiss, J. A., B. N. Maker, and S. Govindjee. Finite element implementation of incompressible, transversely isotropic hyperelasticity. Comput. Methods Biomech. Biomed. Eng. 135:107–128, 1996.

    Google Scholar 

  37. Wood, G. C., and M. K. Keech. The formation of fibrils from collagen solutions. 1. The effect of experimental conditions: kinetic and electron-microscope studies. Biochem. J. 75:588–598, 1960.

    PubMed  CAS  Google Scholar 

  38. Yeh, G., and J. L. Esterhai. Orthopaedics. In: The Surgical Review: An Integrated Basic and Clinical Science Guide, edited by D. Kreisal, A. S. Krupnick, and L. R. Kaiser. Philadelphia, PA: Lippincott Williams and Wilkins, 2000.

    Google Scholar 

Download references

Acknowledgments

The authors thank Victor Lai, Xiao Zhong, and Sadie Doggett for help with SEM acquisition, mechanical testing, and data analysis, respectively. We gratefully acknowledge the financial support of NIH Grants R01-EB005813 and F32-EB012352, and the NSF’s support of the University of Minnesota’s Characterization Facility.

Conflict of Interest

No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor H. Barocas.

Additional information

Associate Editor Michael S. Detamore oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lake, S.P., Barocas, V.H. Mechanical and Structural Contribution of Non-Fibrillar Matrix in Uniaxial Tension: A Collagen-Agarose Co-Gel Model. Ann Biomed Eng 39, 1891–1903 (2011). https://doi.org/10.1007/s10439-011-0298-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0298-1

Keywords