Skip to main content
Log in

Cinemechanometry (CMM): A Method to Determine the Forces that Drive Morphogenetic Movements from Time-Lapse Images

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Although cell-level mechanical forces are crucial to tissue self-organization in contexts ranging from embryo development to cancer metastases to regenerative engineering, the absence of methods to map them over time has been a major obstacle to new understanding. Here, we present a technique for constructing detailed, dynamic maps of the forces driving morphogenetic events from time-lapse images. Forces in the cell are considered to be separable into unknown active driving forces and known passive forces, where actomyosin systems and microtubules contribute primarily to the first group and intermediate filaments and cytoplasm to the latter. A finite-element procedure is used to estimate the field of forces that must be applied to the passive components to produce their observed incremental deformations. This field is assumed to be generated by active forces resolved along user-defined line segments whose location, often along cell edges, is informed by the underlying biology. The magnitudes and signs of these forces are determined by a mathematical inverse method. The efficacy of the approach is demonstrated using noisy synthetic data from a cross section of a generic invagination and from a planar aggregate that involves two cell types, edge forces that vary with time and a neighbor change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5
FIGURE 6
FIGURE 7

Similar content being viewed by others

References

  1. Bausch, A. R., W. Moller, and E. Sackmann. Measurement of local viscoelasticity and forces in living cells by magnetic tweezers. Biophys. J. 76:573–579, 1999.

    Article  CAS  PubMed  Google Scholar 

  2. Brodland, G. W. The differential interfacial tension hypothesis (DITH): a comprehensive theory for the self-rearrangement of embryonic cells and tissues. J. BioMech. Eng. 124:188–197, 2002.

    Article  PubMed  Google Scholar 

  3. Brodland, G. W., D. I. Chen, and J. H. Veldhuis. A cell-based constitutive model for embryonic epithelia and other planar aggregates of biological cells. Int. J. Plast. 22:965–995, 2006.

    Article  Google Scholar 

  4. Brodland, G. W., D. Viens, and J. H. Veldhuis. A new cell-based FE model for the mechanics of embryonic epithelia. CMBBE 10:121–128, 2007.

    PubMed  Google Scholar 

  5. Brodland, G. W., J. Yang, and J. Sweny. Cellular interfacial and surface tensions determined from aggregate compression tests using a finite element model. HFSP J. 3:273–281, 2009.

    Article  PubMed  Google Scholar 

  6. Chen, H. H., and G. W. Brodland. Cell-level finite element studies of viscous cells in planar aggregates. J. BioMech. Eng. 122:394–401, 2000.

    Article  CAS  PubMed  Google Scholar 

  7. Chen, X., and G. W. Brodland. Multi-scale finite element modeling allows the mechanics of amphibian neurulation to be elucidated. Phys. Biol. 5:015003 (15 pp), 2008.

    Google Scholar 

  8. Colombelli, J., E. G. Reynaud, J. Rietdorf, R. Pepperkok, and E. H. K. Stelzer. In vivo selective cytoskeleton dynamics quantification in interphase cells induced by pulsed ultraviolet laser nanosurgery. Traffic 6:1093–1102, 2005.

    Article  CAS  PubMed  Google Scholar 

  9. Conte, V., J. J. Muñoz, B. Baum, and M. Miodownik. Robust mechanisms of ventral furrow invagination require the combination of cellular shape changes. Phys. Biol. 6:16010, 2009.

    Article  Google Scholar 

  10. Cooper, J. E., and K. Worden. On-line physical parameter estimation with adaptive forgetting factors. Mech. Syst. Signal Process. 14:705–730, 2000.

    Article  Google Scholar 

  11. Davis, T. A. Direct Methods for Sparse Linear Systems. Philadelphia: SIAM, 2006.

    Google Scholar 

  12. Einstein, D. R., A. D. Freed, N. Stander, B. Fata, and I. Vesely. Inverse parameter fitting of biological tissues: a response surface approach. Ann. Biomed. Eng. 33:1819–1830, 2005.

    Article  PubMed  Google Scholar 

  13. Fortescue, T. R., L. S. Kershenbaum, and B. E. Ydstie. Implementation of self-tuning regulators with variable forgetting factors. Automatica 17:831–835, 1981.

    Article  Google Scholar 

  14. Freed, A. D. Anisotropy in hypoelastic soft-tissue mechanics, 1: theory. J. Mech. Mater. Struct. 3:911–928, 2008.

    Article  Google Scholar 

  15. Gregor, T., W. Bialek, R. R. de Ruyter van Steveninck, D. W. Tank, and E. F. Wieschaus. Diffusion and scaling during early embryonic pattern formation. Proc. Natl Acad. Sci. USA 102:18403–18407, 2005.

    Article  CAS  PubMed  Google Scholar 

  16. Haykin, S. S. Modern Filters. New York: Macmillan, 1989.

  17. Hibbeler, R. C. Mechanics of Materials. Englewood Cliffs, NJ: Prentice-Hall, 2005.

    Google Scholar 

  18. Hutson, M. S., Y. Tokutake, M. S. Chang, J. W. Bloor, S. Venakides, D. P. Kiehart, and G. S. Edwards. Forces for morphogenesis investigated with laser microsurgery and quantitative modeling. Science 300:145–149, 2003.

    Article  CAS  PubMed  Google Scholar 

  19. Hutson, M. S., J. H. Veldhuis, X. Ma, H. E. Lynch, P. G. Cranston, and G. W. Brodland. Combining laser microsurgery and finite element modeling to asses cell-level epithelial mechanics. Biophys. J. 97:3075–3085, 2009.

    Article  CAS  PubMed  Google Scholar 

  20. Hwang, M., K. J. Niermann, A. Lyshchik, and A. C. Fleischer. Sonographic assessment of tumor response: from in vivo models to clinical applications. Ultrasound Q. 25:175–183, 2009.

    Article  PubMed  Google Scholar 

  21. Kim, W., D. Tretheway, and S. Kohles. An inverse method for predicting tissue-level mechanics from cellular mechanical input. J. Biomech. 42:395–399, 2009.

    Article  PubMed  Google Scholar 

  22. Krieg, M., Y. Arboleda-Estudillo, P.-H. Puech, J. Käfer, F. Graner, D. J. Müller, and C.-P. Heisenberg. Tensile forces govern germ-layer organization in zebrafish. Nat. Cell Biol. 10:429–436, 2008.

    Article  CAS  PubMed  Google Scholar 

  23. Lecuit, T., and P. Lenne. Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis. Nat. Rev. Mol. Cell Biol. 8:633–644, 2007.

    Article  CAS  PubMed  Google Scholar 

  24. Lee, C., H. M. Scherr, and J. B. Wallingford. Shroom family proteins regulate gamma-tubulin distribution and microtubule architecture during epithelial cell shape change. Development 134:1431–1441, 2007.

    Article  CAS  PubMed  Google Scholar 

  25. Ma, X., H. E. Lynch, P. C. Scully, and M. S. Hutson. Probing embryonic tissue mechanics with laser hole drilling. Phys. Biol. 6:036004, 2009.

    Article  PubMed  Google Scholar 

  26. Martin, A. C., M. Kaschube, and E. F. Wieschaus. Pulsed contractions of an actin-myosin network drive apical constriction. Nature 457:495–499, 2009.

    Article  CAS  PubMed  Google Scholar 

  27. Nash, J. C. Compact Numerical Methods for Computers. Bristol: Adam Hilget Ltd, 1979.

    Google Scholar 

  28. Ophir, J., S. K. Alam, B. Garra, F. Kallel, E. Konofagou, T. Krouskop, and T. Varghese. Elastography: ultrasonic estimation and imaging of the elastic properties of tissues. Proc. Inst. Mech. Eng. H 213:203–233, 1999.

    CAS  PubMed  Google Scholar 

  29. Paleologu, C., J. Benesty, and S. Ciochina. A robust variable forgetting factor recursive least-squares algorithm for system identification. IEEE Signal Process. Lett. 15:597–600, 2008.

    Article  Google Scholar 

  30. Puech, P., A. Taubenberger, F. Ulrich, M. Krieg, D. J. Muller, and C. Heisenberg. Measuring cell adhesion forces of primary gastrulating cells from zebrafish using atomic force microscopy. J. Cell Sci. 118:4199–4206, 2005.

    Article  CAS  PubMed  Google Scholar 

  31. Rauzi, M., P. Verant, T. Lecuit, and P. F. Lenne. Nature and anisotropy of cortical forces orienting Drosophila tissue morphogenesis. Nat. Cell Biol. 10:1401–1410, 2008.

    Article  CAS  PubMed  Google Scholar 

  32. Seshaiyer, P., and J. D. Humphrey. A sub-domain inverse finite element characterization of hyperelastic membranes including soft tissues. J. Biomech. Eng. 125:363–371, 2003.

    Article  PubMed  Google Scholar 

  33. Valberg, P. A., and H. A. Feldman. Magnetic particle motions within living cells. Measurement of cytoplasmic viscosity and motile activity. Biophys. J. 52:551–561, 1987.

    Article  CAS  PubMed  Google Scholar 

  34. von Dassow, M., and L. Davidson. Natural variation in embryo mechanics: Gastrulation in Xenopus laevis is highly robust to variation in tissue stiffness. Dev. Dyn. 238:2–18, 2009.

    Article  Google Scholar 

  35. Wallingford, J. B., and R. M. Harland. Neural tube closure requires Dishevelled-dependent convergent extension of the midline. Development 129:5815–5825, 2002.

    Article  CAS  PubMed  Google Scholar 

  36. Wiebe, C., and G. W. Brodland. Tensile properties of embryonic epithelia measured using a novel instrument. J. BioMech. 38:2087–2094, 2005.

    Article  PubMed  Google Scholar 

  37. Wozniak, M. A., and C. S. Chen. Mechanotransduction in development: a growing role for contractility. Nat. Rev. Mol. Cell Biol. 10:34–43, 2009.

    Article  CAS  PubMed  Google Scholar 

  38. Zhou, J., H. Y. Kim, and L. A. Davidson. Actomyosin stiffens the vertebrate embryo during crucial stages of elongation and neural tube closure. Development 136:677–688, 2009.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Funding for this project was provided by the Human Frontiers Science Program (HFSP). The authors thank Shane Hutson and Vito Conte for helpful discussions related to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Wayne Brodland.

Additional information

Associate Editor Michael S. Detamore oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cranston, P.G., Veldhuis, J.H., Narasimhan, S. et al. Cinemechanometry (CMM): A Method to Determine the Forces that Drive Morphogenetic Movements from Time-Lapse Images. Ann Biomed Eng 38, 2937–2947 (2010). https://doi.org/10.1007/s10439-010-9998-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-9998-1

Keywords

Navigation