Skip to main content
Log in

A Model of Cerebrovascular Reactivity Including the Circle of Willis and Cortical Anastomoses

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Cerebrovascular pathologies are extremely complex, due to the multitude of factors acting simultaneously on cerebral hemodynamics. In this work, a mathematical model of cerebral hemodynamics and intracranial pressure (ICP) dynamics, developed in previous years, is extended to account for heterogeneity in cerebral blood flow. The model includes the Circle of Willis, six regional districts independently regulated by autoregulation and CO2 reactivity, distal cortical anastomoses, venous circulation, the cerebrospinal fluid circulation, and the ICP–volume relationship. Results agree with data in the literature and highlight the existence of a monotonic relationship between transient hyperemic response and the autoregulation gain. During unilateral internal carotid artery stenosis, local blood flow regulation is progressively lost in the ipsilateral territory with the presence of a steal phenomenon, while the anterior communicating artery plays the major role to redistribute the available blood flow. Conversely, distal collateral circulation plays a major role during unilateral occlusion of the middle cerebral artery. In conclusion, the model is able to reproduce several different pathological conditions characterized by heterogeneity in cerebrovascular hemodynamics and cannot only explain generalized results in terms of physiological mechanisms involved, but also, by individualizing parameters, may represent a valuable tool to help with difficult clinical decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ACA:

Anterior cerebral artery

ACA1 :

Precommunicating portion of the ACA

ACA2 :

Postcommunicating portion of ACA

ACoA:

Anterior communicating artery

BA:

Basilar artery

CBF:

Cerebral blood flow

CPP:

Cerebral perfusion pressure

CSF:

Cerebrospinal fluid

ICA:

Internal carotid artery

ICP:

Intracranial pressure

MAP:

Mean systemic pressure

MCA:

Middle cerebral artery

\(P_{{\text{aCO}}_{2}}\) :

Arterial CO2 partial pressure

PCA:

Posterior cerebral artery

PCA1 :

Precommunicating portion of the PCA

PCA2 :

Postcommunicating portion of PCA

PCoA:

Posterior communicating artery

THR:

Transient hyperemic response

References

  1. Aaslid, R., T. M. Markwalder, and H. Nornes. Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J. Neurosurg. 57:769–774, 1982.

    Article  PubMed  CAS  Google Scholar 

  2. Alastruey, J., K. H. Parker, J. Peiro, S. M. Byrd, and S. J. Sherwin. Modelling the circle of Willis to assess the effects of anatomical variations and occlusions on cerebral flows. J. Biomech. 40:1794–1805, 2007.

    Article  PubMed  CAS  Google Scholar 

  3. Alpers, B. J., and R. G. Berry. Circle of Willis in cerebral vascular disorders. The anatomical structure. Arch. Neurol. 8:398–402, 1963.

    PubMed  CAS  Google Scholar 

  4. Avezaat, C. J., J. H. van Eijndhoven, and D. J. Wyper. Cerebrospinal fluid pulse pressure and intracranial volume–pressure relationships. J. Neurol. Neurosurg. Psychiatry 42:687–700, 1979.

    Article  PubMed  CAS  Google Scholar 

  5. Bishop, C. C., S. Powell, M. Insall, D. Rutt, and N. L. Browse. Effect of internal carotid artery occlusion on middle cerebral artery blood flow at rest and in response to hypercapnia. Lancet 1:710–712, 1986.

    Article  PubMed  CAS  Google Scholar 

  6. Bowie, R., and R. P. Mahajan. Effect of magnitude of the decrease in middle cerebral artery flow velocity during the hyperaemic response test on calculated indices of autoregulation. Br. J. Anaesth. 83:187, 1999.

    Google Scholar 

  7. Cassot, F., Vergeur, V., Bossuet, P., Hillen, B., Zagzoule, M., and Marc-Vergnes, J. P. Effects of anterior communicating artery diameter on cerebral hemodynamics in internal carotid artery disease. A model study. Circulation 92:3122-3131, 15-11-1995.

    PubMed  CAS  Google Scholar 

  8. Cassot, F., M. Zagzoule, and J. P. Marc-Vergnes. Hemodynamic role of the circle of Willis in stenoses of internal carotid arteries. An analytical solution of a linear model. J. Biomech. 33:395–405, 2000.

    Article  PubMed  CAS  Google Scholar 

  9. Cavill, G., E. J. Simpson, and R. P. Mahajan. Factors affecting assessment of cerebral autoregulation using the transient hyperaemic response test. Br. J. Anaesth. 81:317–321, 1998.

    PubMed  CAS  Google Scholar 

  10. Cebral, J., R. Lohner, P. J. Yim, and P. L. Choyke. Blood flow predictions during neuro-surgery and carotid artery stenting. Int. J. Bioelectromagnet. 3:1–12, 2001.

    Google Scholar 

  11. Charbel, F. T., M. Zhao, S. Min-Hanjani, W. Hoffman, X. Du, and M. E. Clark. A patient-specific computer model to predict outcomes of the balloon occlusion test. J. Neurosurg. 101:977–988, 2004.

    Article  PubMed  Google Scholar 

  12. Cirovic, S., C. Walsh, and W. D. Fraser. Mathematical study of the role of non-linear venous compliance in the cranial volume–pressure test. Med. Biol. Eng. Comput. 41:579–588, 2003.

    Article  PubMed  CAS  Google Scholar 

  13. Cold, G. E. Cerebral blood flow in acute head injury. The regulation of cerebral blood flow and metabolism during the acute phase of head injury, and its significance for therapy. Acta Neurochir. Suppl (Wien.) 49:1–64, 1990.

    CAS  Google Scholar 

  14. Coyle, P., and D. D. Heistad. Blood flow through cerebral collateral vessels one month after middle cerebral artery occlusion. Stroke 18:407–411, 1987.

    PubMed  CAS  Google Scholar 

  15. Coyle, P., and D. D. Heistad. Development of collaterals in the cerebral circulation. Blood Vessels 28:183–189, 1991.

    PubMed  CAS  Google Scholar 

  16. Czosnyka, M., J. Pickard, H. Whitehouse, and S. Piechnik. The hyperaemic response to a transient reduction in cerebral perfusion pressure. A modelling study. Acta Neurochir. (Wien) 115:90–97, 1992.

    Article  CAS  Google Scholar 

  17. Darby, J. M., H. Yonas, D. W. Marion, and R. E. Latchaw. Local “inverse steal” induced by hyperventilation in head injury. Neurosurgery 23:84–88, 1988.

    Article  PubMed  CAS  Google Scholar 

  18. David, T., M. Brown, and A. Ferrandez. Auto-regulation and blood flow in the cerebral circulation. Int. J. Numer. Method Fluid 43:701–713, 2003.

    Article  Google Scholar 

  19. David, T., and S. Moore. Modeling perfusion in the cerebral vasculature. Med. Eng. Phys. 30:1227–1245, 2008.

    Article  PubMed  CAS  Google Scholar 

  20. Derdeyn, C. P., W. J. Powers, and R. L. Grubb, Jr. Hemodynamic effects of middle cerebral artery stenosis and occlusion. Am. J. Neuroradiol. 19:1463–1469, 1998.

    PubMed  CAS  Google Scholar 

  21. Edvinsson, L., E. MacKenzie, and J. McCulloch. Cerebral Blood Flow and Metabolism. New York: Raven Press, 1993.

    Google Scholar 

  22. Ekstedt, J. CSF hydrodynamic studies in man. 2. Normal hydrodynamic variables related to CSF pressure and flow. J. Neurol. Neurosurg. Psychiatry 41:345–353, 1978.

    Article  PubMed  CAS  Google Scholar 

  23. Giannessi, M., M. Ursino, and W. B. Murray. The design of a digital cerebrovascular simulation model for teaching and research. Anesth. Analg. 107:1997–2008, 2008.

    Article  PubMed  Google Scholar 

  24. Gibo, H., C. Lenkey, and A. L. Rhoton, Jr. Microsurgical anatomy of the supraclinoid portion of the internal carotid artery. J. Neurosurg. 55:560–574, 1981.

    Article  PubMed  CAS  Google Scholar 

  25. Giller, C. A. A bedside test for cerebral autoregulation using transcranial Doppler ultrasound. Acta Neurochir. (Wien.) 108:7–14, 1991.

    Article  CAS  Google Scholar 

  26. Gooskens, I., E. A. Schmidt, M. Czosnyka, S. K. Piechnik, P. Smielewski, P. J. Kirkpatrick, and J. D. Pickard. Pressure-autoregulation, CO2 reactivity and asymmetry of haemodynamic parameters in patients with carotid artery stenotic disease. A clinical appraisal. Acta Neurochir. (Wien.) 145:527–532, 2003.

    Article  CAS  Google Scholar 

  27. Greenberg, J. H., M. Reivich, and A. Noordergraaf. A model of cerebral blood flow control in hypercapnia. Ann. Biomed. Eng. 6:453–491, 1978.

    Article  PubMed  CAS  Google Scholar 

  28. Greenberg, J., A. Noordegraaf, and M. Reivich. Control of cerebral blood flow: model and experiments. In: Cardiovascular System Dynamics. edited by J. Baan, A. Noordegraaf, and J. Raines. Cambridge, MA: MIT Press, 1978, pp. 291–299.

    Google Scholar 

  29. Hakim, S., J. G. Venegas, and J. D. Burton. The physics of the cranial cavity, hydrocephalus and normal pressure hydrocephalus: mechanical interpretation and mathematical model. Surg. Neurol. 5:187–210, 1976.

    PubMed  CAS  Google Scholar 

  30. Harper, A. M., and H. I. Glass. Effect of alterations in the arterial carbon dioxide tension on the blood flow through the cerebral cortex at normal and low arterial blood pressures. J. Neurol. Neurosurg. Psychiatry 28:449–452, 1965.

    Article  PubMed  CAS  Google Scholar 

  31. Harper, S. L., H. G. Bohlen, and M. J. Rubin. Arterial and microvascular contributions to cerebral cortical autoregulation in rats. Am. J. Physiol. 246:H17–H24, 1984.

    PubMed  CAS  Google Scholar 

  32. Hayashi, K., H. Handa, S. Nagasawa, A. Okumura, and K. Moritake. Stiffness and elastic behavior of human intracranial and extracranial arteries. J. Biomech. 13:175–184, 1980.

    Article  PubMed  CAS  Google Scholar 

  33. Hillen, B. The variability of the circle of Willis: univariate and bivariate analysis 3. Acta Morphol. Neerl. Scand. 24:87–101, 1986.

    PubMed  CAS  Google Scholar 

  34. Hoffmann, O. Biomathematics of intracranial CSF and haemodynamics. Simulation and analysis with the aid of a mathematical model. Acta Neurochir. Suppl. (Wien) 40:117–130, 1987.

    CAS  Google Scholar 

  35. Hoksbergen, A. W., B. Fulesdi, D. A. Legemate, and L. Csiba. Collateral configuration of the circle of Willis: transcranial color-coded duplex ultrasonography and comparison with postmortem anatomy. Stroke 31:1346–1351, 2000.

    PubMed  CAS  Google Scholar 

  36. Hudetz, A. G., J. H. Halsey, Jr., C. R. Horton, K. A. Conger, and D. D. Reneau. Mathematical simulation of cerebral blood flow in focal ischemia. Stroke 13:693–700, 1982.

    PubMed  CAS  Google Scholar 

  37. Jung, A., R. Faltermeier, R. Rothoerl, and A. Brawanski. A mathematical model of cerebral circulation and oxygen supply. J. Math. Biol. 51:491–507, 2005.

    Article  PubMed  Google Scholar 

  38. Kadas, Z. M., W. D. Lakin, J. Yu, and P. L. Penar. A mathematical model of the intracranial system including autoregulation. Neurol. Res. 19:441–450, 1997.

    PubMed  CAS  Google Scholar 

  39. Kontos, H. A., E. P. Wei, R. M. Navari, J. E. Levasseur, W. I. Rosenblum, and J. L. Patterson, Jr. Responses of cerebral arteries and arterioles to acute hypotension and hypertension. Am. J. Physiol. 234:H371–H383, 1978.

    PubMed  CAS  Google Scholar 

  40. Kosteljanetz, M. Acute head injury: pressure–volume relations and cerebrospinal fluid dynamics. Neurosurgery 18:17–24, 1986.

    Article  PubMed  CAS  Google Scholar 

  41. Lindegaard, K. F., S. J. Bakke, P. Grolimund, R. Aaslid, P. Huber, and H. Nornes. Assessment of intracranial hemodynamics in carotid artery disease by transcranial Doppler ultrasound. J. Neurosurg. 63:890–898, 1985.

    Article  PubMed  CAS  Google Scholar 

  42. Long, Q., L. Luppi, C. S. Konig, V. Rinaldo, and S. K. Das. Study of the collateral capacity of the circle of Willis of patients with severe carotid artery stenosis by 3D computational modeling. J. Biomech. 41:2735–2742, 2008.

    Article  PubMed  Google Scholar 

  43. Lu, K., J. W. Clark, Jr., F. H. Ghorbel, C. S. Robertson, D. L. Ware, J. B. Zwischenberger, and A. Bidani. Cerebral autoregulation and gas exchange studied using a human cardiopulmonary model. Am. J. Physiol. Heart Circ. Physiol. 286:H584–H601, 2004.

    Article  PubMed  CAS  Google Scholar 

  44. MacKenzie, E. T., J. K. Farrar, W. Fitch, D. I. Graham, P. C. Gregory, and A. M. Harper. Effects of hemorrhagic hypotension on the cerebral circulation. I. Cerebral blood flow and pial arteriolar caliber. Stroke 10:711–718, 1979.

    PubMed  CAS  Google Scholar 

  45. Mahajan, R. P., G. Cavill, and E. J. Simpson. Reliability of the transient hyperemic response test in detecting changes in cerebral autoregulation induced by the graded variations in end-tidal carbon dioxide. Anesth. Analg. 87:843–849, 1998.

    Article  PubMed  CAS  Google Scholar 

  46. Matakas, F., W. R. Von, R. Knupling, and S. J. Potolicchio, Jr. Increase in cerebral perfusion pressure by arterial hypertension in brain swelling. A mathematical model of the volume–pressure relationship. J. Neurosurg. 42:282–289, 1975.

    Article  PubMed  CAS  Google Scholar 

  47. Miralles, M., J. L. Dolz, J. Cotillas, J. Aldoma, M. A. Santiso, A. Gimenez, A. Capdevila, and M. A. Cairols. The role of the circle of Willis in carotid occlusion: assessment with phase contrast MR angiography and transcranial duplex. Eur. J. Vasc. Endovasc. Surg. 10:424–430, 1995.

    Article  PubMed  CAS  Google Scholar 

  48. Moore, S., T. David, J. G. Chase, J. Arnold, and J. Fink. 3D models of blood flow in the cerebral vasculature. J. Biomech. 39:1454–1463, 2006.

    Article  PubMed  CAS  Google Scholar 

  49. Moorhead, K. T., J. G. Chase, T. David, and J. Arnold. Metabolic model of autoregulation in the Circle of Willis. J. Biomech. Eng. 128:462–466, 2006.

    Article  PubMed  CAS  Google Scholar 

  50. Moorhead, K. T., C. V. Doran, J. G. Chase, and T. David. Lumped parameter and feedback control models of the auto-regulatory response in the Circle of Willis. Comput. Method Biomech. Biomed. Eng. 7:121–130, 2004.

    Article  CAS  Google Scholar 

  51. Norrving, B., B. Nilsson, and J. Risberg. rCBF in patients with carotid occlusion. Resting and hypercapnic flow related to collateral pattern. Stroke 13:155–162, 1982.

    PubMed  CAS  Google Scholar 

  52. Olsen, T. S. Regional cerebral blood flow after occlusion of the middle cerebral artery. Acta Neurol. Scand. 73:321–337, 1986.

    Article  PubMed  CAS  Google Scholar 

  53. Olufsen, M. S., J. T. Ottesen, H. T. Tran, L. M. Ellwein, L. A. Lipsitz, and V. Novak. Blood pressure and blood flow variation during postural change from sitting to standing: model development and validation. J. Appl. Physiol. 99:1523–1537, 2005.

    Article  PubMed  Google Scholar 

  54. Orosz, L., A. W. Hoksbergen, C. Molnar, P. Siro, F. Cassot, J. P. Marc-Vergnes, and B. Fulesdi. Clinical applicability of a mathematical model in assessing the functional ability of the communicating arteries of the circle of Willis. J. Neurol. Sci. 287(1):94–99, 2009.

    Article  PubMed  Google Scholar 

  55. Perlmutter, D., and A. L. Rhoton, Jr. Microsurgical anatomy of the anterior cerebral-anterior communicating-recurrent artery complex. J. Neurosurg. 45:259–272, 1976.

    Article  PubMed  CAS  Google Scholar 

  56. Piepgras, A., P. Schmiedek, G. Leinsinger, R. L. Haberl, C. M. Kirsch, and K. M. Einhaupl. A simple test to assess cerebrovascular reserve capacity using transcranial Doppler sonography and acetazolamide. Stroke 21:1306–1311, 1990.

    PubMed  CAS  Google Scholar 

  57. Pistolese, G. R., V. Faraglia, A. Agnoli, M. Prencipe, E. Pastore, C. Spartera, and P. Fiorani. Cerebral hemispheric “counter-steal” phenomenon during hyperventilation in cerebrovascular diseases. Stroke 3:456–461, 1972.

    PubMed  CAS  Google Scholar 

  58. Popel, A. S. Theory of oxygen transport to tissue. Crit Rev. Biomed. Eng. 17:257–321, 1989.

    PubMed  CAS  Google Scholar 

  59. Reivich, M. Arterial pCO2 cerebral hemodynamics. Am. J. Physiol. 206:25–35, 1964.

    PubMed  CAS  Google Scholar 

  60. Rosner, M. J., and D. P. Becker. Origin and evolution of plateau waves. Experimental observations and a theoretical model. J. Neurosurg. 60:312–324, 1984.

    Article  PubMed  CAS  Google Scholar 

  61. Schmiedek, P., A. Piepgras, G. Leinsinger, C. M. Kirsch, and K. Einhupl. Improvement of cerebrovascular reserve capacity by EC-IC arterial bypass surgery in patients with ICA occlusion and hemodynamic cerebral ischemia. J. Neurosurg. 81:236–244, 1994.

    Article  PubMed  CAS  Google Scholar 

  62. Shapiro, K., A. Marmarou, and K. Shulman. Characterization of clinical CSF dynamics and neural axis compliance using the pressure–volume index: I. The normal pressure–volume index. Ann. Neurol. 7:508–514, 1980.

    Article  PubMed  CAS  Google Scholar 

  63. Smielewski, P., M. Czosnyka, V. Iyer, S. Piechnik, H. Whitehouse, and J. Pickard. Computerised transient hyperaemic response test—a method for the assessment of cerebral autoregulation. Ultrasound Med. Biol. 21:599–611, 1995.

    Article  PubMed  CAS  Google Scholar 

  64. Smielewski, P., M. Czosnyka, P. Kirkpatrick, H. McEroy, H. Rutkowska, and J. D. Pickard. Assessment of cerebral autoregulation using carotid artery compression. Stroke 27:2197–2203, 1996.

    PubMed  CAS  Google Scholar 

  65. Smielewski, P., M. Czosnyka, P. Kirkpatrick, and J. D. Pickard. Evaluation of the transient hyperemic response test in head-injured patients. J. Neurosurg. 86:773–778, 1997.

    Article  PubMed  CAS  Google Scholar 

  66. Spetzler, R. F., R. A. Roski, and J. Zabramski. Middle cerebral artery perfusion pressure in cerebrovascular occlusive disease. Stroke 14:552–555, 1983.

    PubMed  CAS  Google Scholar 

  67. Tibble, R. K., K. J. Girling, and R. P. Mahajan. A comparison of the transient hyperemic response test and the static autoregulation test to assess graded impairment in cerebral autoregulation during propofol, desflurane, and nitrous oxide anesthesia. Anesth. Analg. 93:171–176, 2001.

    Article  PubMed  CAS  Google Scholar 

  68. Ursino, M. Computer analysis of the main parameters extrapolated from the human intracranial basal artery blood flow. Comput. Biomed. Res. 23:542–559, 1990.

    Article  PubMed  CAS  Google Scholar 

  69. Ursino, M., and P. Di Giammarco. A mathematical model of the relationship between cerebral blood volume and intracranial pressure changes: the generation of plateau waves. Ann. Biomed. Eng. 19:15–42, 1991.

    Article  PubMed  CAS  Google Scholar 

  70. Ursino, M., M. Giannessi, M. Frapparelli, and E. Magosso. Effect of cushing response on systemic arterial pressure. IEEE Eng. Med. Biol. Mag. 28(6):63–71, 2009.

    Article  PubMed  Google Scholar 

  71. Ursino, M., and M. Giulioni. Quantitative assessment of cerebral autoregulation from transcranial Doppler pulsatility: a computer simulation study. Med. Eng. Phys. 25:655–666, 2003.

    Article  PubMed  CAS  Google Scholar 

  72. Ursino, M., M. Giulioni, and C. A. Lodi. Relationships among cerebral perfusion pressure, autoregulation, and transcranial Doppler waveform: a modeling study. J. Neurosurg. 89:255–266, 1998.

    Article  PubMed  CAS  Google Scholar 

  73. Ursino, M., M. Iezzi, and N. Stocchetti. Intracranial pressure dynamics in patients with acute brain damage: a critical analysis with the aid of a mathematical model. IEEE Trans. Biomed. Eng. 42:529–540, 1995.

    Article  PubMed  CAS  Google Scholar 

  74. Ursino, M., and C. A. Lodi. A simple mathematical model of the interaction between intracranial pressure and cerebral hemodynamics. J. Appl. Physiol. 82:1256–1269, 1997.

    PubMed  CAS  Google Scholar 

  75. Ursino, M., and E. Magosso. Role of tissue hypoxia in cerebrovascular regulation: a mathematical modeling study. Ann. Biomed. Eng. 29:563–574, 2001.

    Article  PubMed  CAS  Google Scholar 

  76. Ursino, M., A. Ter Minassian, C. A. Lodi, and L. Beydon. Cerebral hemodynamics during arterial and CO(2) pressure changes: in vivo prediction by a mathematical model. Am. J. Physiol. Heart Circ. Physiol. 279:H2439–H2455, 2000.

    PubMed  CAS  Google Scholar 

  77. Webster, M. W., M. S. Makaroun, D. L. Steed, H. A. Smith, D. W. Johnson, and H. Yonas. Compromised cerebral blood flow reactivity is a predictor of stroke in patients with symptomatic carotid artery occlusive disease. J. Vasc. Surg. 21:338–344, 1995.

    Article  PubMed  CAS  Google Scholar 

  78. Wei, E. P., H. A. Kontos, and J. L. Patterson, Jr. Dependence of pial arteriolar response to hypercapnia on vessel size. Am. J. Physiol. 238:697–703, 1980.

    PubMed  CAS  Google Scholar 

  79. Yonas, H., H. A. Smith, S. R. Durham, S. L. Pentheny, and D. W. Johnson. Increased stroke risk predicted by compromised cerebral blood flow reactivity. J. Neurosurg. 79:483–489, 1993.

    Article  PubMed  CAS  Google Scholar 

  80. Zagzoule, M., and J. P. Marc-Vergnes. A global mathematical model of the cerebral circulation in man. J. Biomech. 19:1015–1022, 1986.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Ursino.

Additional information

Associate Editor Larry V. McIntire oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ursino, M., Giannessi, M. A Model of Cerebrovascular Reactivity Including the Circle of Willis and Cortical Anastomoses. Ann Biomed Eng 38, 955–974 (2010). https://doi.org/10.1007/s10439-010-9923-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-9923-7

Keywords

Navigation