Skip to main content
Log in

Biotransport Phenomena in Freezing Mammalian Oocytes

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Water transport across the cell plasma membrane and intracellular ice formation (IIF)—the two biophysical events that may cause cell injury during cryopreservation—were studied by cryomicroscopy and modeling using mammalian (Peromyscus) oocytes. Unusually high activation energy for water transport across the cell plasma membrane was identified indicating that the water transport process is unusually sensitive to temperature (and cooling rate). Although literally all studies on IIF were conducted using protocols with ice-seeding (seeding extracellular ice usually at ≥−7 °C), it is not used for cell cryopreservation by vitrification that is becoming increasingly popular today. In this article, we show that ice-seeding has a significant impact on IIF. With ice-seeding and cooling at 60 °C/min, IIF was observed to occur over a wide range from approximately −8 to −48 °C with a clear change of the ice nucleation mechanism (from surface- to volume-catalyzed nucleation) at approximately −43 °C. On the contrary, without ice-seeding, IIF occurred over a much narrower range from approximately −19 to −27 °C without a noticeable change of the nucleation mechanism. Moreover, the kinetics of IIF without ice-seeding was found to be strongly temperature (and cooling rate) dependent. These findings indicate the importance of quantifying the IIF kinetics in the absence of ice-seeding during cooling for development of optimal vitrification protocols of cell cryopreservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Balasubramanian, S. K., R. T. Venkatasubramanian, A. Menon, and J. C. Bischof. Thermal injury prediction during cryoplasty through in vitro characterization of smooth muscle cell biophysics and viability. Ann. Biomed. Eng. 36:86–101, 2008.

    Article  PubMed  Google Scholar 

  2. Benson, C. T., and J. K. Critser. Variation of water permeability (Lp) and its activation energy (Ea) among unfertilized golden hamster and ICR murine oocytes. Cryobiology 31:215–223, 1994.

    Article  CAS  PubMed  Google Scholar 

  3. Berrada, M. S., and J. C. Bischof. Evaluation of freezing effects on human microvascular-endothelial cells (HMEC). Cryo Letters 22:353–366, 2001.

    CAS  PubMed  Google Scholar 

  4. Bischof, J. C. Quantitative measurement and prediction of biophysical response during freezing in tissues. Annu. Rev. Biomed. Eng. 2:257–288, 2000.

    Article  CAS  PubMed  Google Scholar 

  5. Bischof, J. C., C. M. Ryan, R. G. Tompkins, M. L. Yarmush, and M. Toner. Ice formation in isolated human hepatocytes and human liver tissue. ASAIO J. 43:271–278, 1997.

    CAS  PubMed  Google Scholar 

  6. Chen, S. U., Y. R. Lien, H. F. Chen, K. H. Chao, H. N. Ho, and Y. S. Yang. Open pulled straws for vitrification of mature mouse oocytes preserve patterns of meiotic spindles and chromosomes better than conventional straws. Hum. Reprod. 15:2598–2603, 2000.

    Article  CAS  PubMed  Google Scholar 

  7. Chen, S. U., Y. R. Lien, Y. Y. Cheng, H. F. Chen, H. N. Ho, and Y. S. Yang. Vitrification of mouse oocytes using closed pulled straws (CPS) achieves a high survival and preserves good patterns of meiotic spindles, compared with conventional straws, open pulled straws (OPS) and grids. Hum. Reprod. 16:2350–2356, 2001.

    Article  CAS  PubMed  Google Scholar 

  8. Darr, T. B., and A. Hubel. Freezing characteristics of isolated pig and human hepatocytes. Cell Transplant. 6:173–183, 1997.

    Article  CAS  PubMed  Google Scholar 

  9. Dessolle, L., V. de Larouziere, C. Ravel, I. Berthaut, J. M. Antoine, and J. Mandelbaum. Slow freezing and vitrification of human mature and immature oocytes. Gynecol. Obstet. Fertil. 37:712–719, 2009.

    Article  CAS  PubMed  Google Scholar 

  10. Devireddy, R. V., J. E. Coad, and J. C. Bischof. Microscopic and calorimetric assessment of freezing processes in uterine fibroid tumor tissue. Cryobiology 42:225–243, 2001.

    Article  CAS  PubMed  Google Scholar 

  11. Devireddy, R. V., D. Raha, and J. C. Bischof. Measurement of water transport during freezing in cell suspensions using a differential scanning calorimeter. Cryobiology 36:124–155, 1998.

    Article  CAS  PubMed  Google Scholar 

  12. Dowgert, M. F., and P. L. Steponkus. Effect of cold acclimation on intracellular ice formation in isolated protoplasts. Plant Physiol. 72:978–988, 1983.

    Article  CAS  PubMed  Google Scholar 

  13. Fabbri, R. Cryopreservation of human oocytes and ovarian tissue. Cell Tissue Bank 7:113–122, 2006.

    Article  PubMed  Google Scholar 

  14. Fahy, G. M., D. R. MacFarlane, C. A. Angell, and H. T. Meryman. Vitrification as an approach to cryopreservation. Cryobiology 21:407–426, 1984.

    Article  CAS  PubMed  Google Scholar 

  15. Fahy, G. M., B. Wowk, J. Wu, and S. Paynter. Improved vitrification solutions based on the predictability of vitrification solution toxicity. Cryobiology 48:22–35, 2004.

    Article  CAS  PubMed  Google Scholar 

  16. Fowler, A., and M. Toner. Cryo-injury and biopreservation. Ann. N. Y. Acad. Sci. 1066:119–135, 2005.

    Article  CAS  PubMed  Google Scholar 

  17. Fray, M. D. Biological methods for archiving and maintaining mutant laboratory mice. Part I: conserving mutant strains. Methods Mol. Biol. 561:301–319, 2009.

    Article  CAS  PubMed  Google Scholar 

  18. Gardner, D. K., C. B. Sheehan, L. Rienzi, M. Katz-Jaffe, and M. G. Larman. Analysis of oocyte physiology to improve cryopreservation procedures. Theriogenology 67:64–72, 2007.

    Article  CAS  PubMed  Google Scholar 

  19. Han, B., and J. C. Bischof. Engineering challenges in tissue preservation. Cell Preserv. Technol. 2:91–112, 2004.

    Article  Google Scholar 

  20. Harris, C. L., M. Toner, A. Hubel, E. G. Cravalho, M. L. Yarmush, and R. G. Tompkins. Cryopreservation of isolated hepatocytes: intracellular ice formation under various chemical and physical conditions. Cryobiology 28:436–444, 1991.

    Article  CAS  PubMed  Google Scholar 

  21. He, X., and J. C. Bischof. Quantification of temperature and injury response in thermal therapy and cryosurgery. Crit. Rev. Biomed. Eng. 31:355–422, 2003.

    Article  PubMed  Google Scholar 

  22. He, X., and J. C. Bischof. The kinetics of thermal injury in human renal carcinoma cells. Ann. Biomed. Eng. 33:502–510, 2005.

    Article  PubMed  Google Scholar 

  23. He, X., S. McGee, J. E. Coad, F. Schmidlin, P. A. Iaizzo, D. J. Swanlund, S. Kluge, E. Rudie, and J. C. Bischof. Investigation of the thermal and tissue injury behaviour in microwave thermal therapy using a porcine kidney model. Int. J. Hyperthermia 20:567–593, 2004.

    Article  CAS  PubMed  Google Scholar 

  24. He, X., E. Y. Park, A. Fowler, M. L. Yarmush, and M. Toner. Vitrification by ultra-fast cooling at a low concentration of cryoprotectants in a quartz micro-capillary: a study using murine embryonic stem cells. Cryobiology 56:223–232, 2008.

    Article  CAS  PubMed  Google Scholar 

  25. He, X., W. F. Wolkers, J. H. Crowe, D. J. Swanlund, and J. C. Bischof. In situ thermal denaturation of proteins in dunning AT-1 prostate cancer cells: implication for hyperthermic cell injury. Ann. Biomed. Eng. 32:1384–1398, 2004.

    Article  PubMed  Google Scholar 

  26. He, X. M., A. Fowler, and M. Toner. Water activity and mobility in solutions of glycerol and small molecular weight sugars: Implication for cryo- and lyopreservation. J. Appl. Phys. 100:074702, 2006 (074711 pp).

    Google Scholar 

  27. Heng, B. C., L. L. Kuleshova, S. M. Bested, H. Liu, and T. Cao. The cryopreservation of human embryonic stem cells. Biotechnol. Appl. Biochem. 41:97–104, 2005.

    Article  CAS  PubMed  Google Scholar 

  28. Himmelblau, D. M. Applied Nonlinear Programming. New York: McGraw-Hill Inc., 1972.

    Google Scholar 

  29. Hunt, C. J., D. E. Pegg, and S. E. Armitage. Optimising cryopreservation protocols for haematopoietic progenitor cells: a methodological approach for umbilical cord blood. Cryoletters 27:73–83, 2006.

    PubMed  Google Scholar 

  30. Hunter, J., A. Bernard, B. Fuller, J. McGrath, and R. W. Shaw. Plasma membrane water permeabilities of human oocytes: the temperature dependence of water movement in individual cells. J. Cell. Physiol. 150:175–179, 1992.

    Article  CAS  PubMed  Google Scholar 

  31. Hunter, J. E., A. Bernard, B. J. Fuller, J. J. McGrath, and R. W. Shaw. Measurements of the membrane water permeability (Lp) and its temperature dependence (activation energy) in human fresh and failed-to-fertilize oocytes and mouse oocyte. Cryobiology 29:240–249, 1992.

    Article  CAS  PubMed  Google Scholar 

  32. Jain, J. K., and R. J. Paulson. Oocyte cryopreservation. Fertil. Steril. 86(Suppl 4):1037–1046, 2006.

    Article  CAS  PubMed  Google Scholar 

  33. Jeruss, J. S., and T. K. Woodruff. Preservation of fertility in patients with cancer. N. Engl. J. Med. 360:902–911, 2009.

    Article  CAS  PubMed  Google Scholar 

  34. Karlsson, J. O. M., E. G. Cravalho, and M. Toner. A model of diffusion-limited ice growth inside biological cells during freezing. J. Appl. Phys. 75:4442–4445, 1994.

    Article  Google Scholar 

  35. Karlsson, J. O., A. I. Younis, A. W. Chan, K. G. Gould, and A. Eroglu. Permeability of the rhesus monkey oocyte membrane to water and common cryoprotectants. Mol. Reprod. Dev. 76:321–333, 2009.

    Article  CAS  PubMed  Google Scholar 

  36. Kleinhans, F. W., and P. Mazur. Determination of the water permeability (Lp) of mouse oocytes at −25 degrees C and its activation energy at subzero temperatures. Cryobiology 58:215–224, 2009.

    Article  CAS  PubMed  Google Scholar 

  37. Kouba, A. J., and C. K. Vance. Applied reproductive technologies and genetic resource banking for amphibian conservation. Reprod. Fertil. Dev. 21:719–737, 2009.

    Article  PubMed  Google Scholar 

  38. Leibo, S. P. Water permeability and its activation energy of fertilized and unfertilized mouse ova. J. Membr. Biol. 53:179–188, 1980.

    Article  CAS  PubMed  Google Scholar 

  39. Leibo, S. P., and N. Songsasen. Cryopreservation of gametes and embryos of non-domestic species. Theriogenology 57:303–326, 2002.

    Article  CAS  PubMed  Google Scholar 

  40. Levin, R. L., E. G. Cravalho, and C. E. Huggins. A membrane model describing the effect of temperature on the water conductivity of erythrocyte membranes at subzero temperatures. Cryobiology 13:415–429, 1976.

    Article  CAS  PubMed  Google Scholar 

  41. Litkouhi, B., D. Marlow, J. J. McGrath, and B. Fuller. The influence of cryopreservation on murine oocyte water permeability and osmotically inactive volume. Cryobiology 34:23–35, 1997.

    Article  CAS  PubMed  Google Scholar 

  42. Mandelbaum, J., J. Belaisch-Allart, A. M. Junca, J. M. Antoine, M. Plachot, S. Alvarez, M. O. Alnot, and J. Salat-Baroux. Cryopreservation in human assisted reproduction is now routine for embryos but remains a research procedure for oocytes. Hum. Reprod. 13(Suppl 3):161–174, 1998.

    PubMed  Google Scholar 

  43. Manipalviratn, S., and A. Decherney. Clinical application of human oocyte cryopreservation. Rev. Recent Clin. Trials 3:104–110, 2008.

    Article  PubMed  Google Scholar 

  44. Mathias, S. F., F. Franks, and K. Trafford. Nucleation and growth of ice in deeply undercooled erythrocytes. Cryobiology 21:123–132, 1984.

    Article  CAS  PubMed  Google Scholar 

  45. Mazur, P. Kinetics of water loss from cells at subzero temperatures and the likelihood of intracellular freezing. J. Gen. Physiol. 47:347–369, 1963.

    Article  CAS  PubMed  Google Scholar 

  46. Mazur, P. The role of cell membranes in the freezing of yeast and other single cells. Ann. N. Y. Acad. Sci. 125:658–676, 1965.

    Article  CAS  PubMed  Google Scholar 

  47. Mazur, P. Freezing of living cells: mechanisms and implications. Am. J. Physiol. 247:C125–142, 1984.

    CAS  PubMed  Google Scholar 

  48. Mazur, P., S. P. Leibo, and G. E. Seidel, Jr. Cryopreservation of the germplasm of animals used in biological and medical research: importance, impact, status, and future directions. Biol. Reprod. 78:2–12, 2008.

    Article  CAS  PubMed  Google Scholar 

  49. Myers, S. P., R. E. Pitt, D. V. Lynch, and P. L. Steponkus. Characterization of intracellular ice formation in Drosophila melanogaster embryos. Cryobiology 26:472–484, 1989.

    Article  CAS  PubMed  Google Scholar 

  50. Nagy, Z. P., C. C. Chang, D. B. Shapiro, D. P. Bernal, H. I. Kort, and G. Vajta. The efficacy and safety of human oocyte vitrification. Semin. Reprod. Med. 27:450–455, 2009.

    Article  CAS  PubMed  Google Scholar 

  51. Pedro, P. B., E. Yokoyama, S. E. Zhu, N. Yoshida, D. M. Valdez, Jr., M. Tanaka, K. Edashige, and M. Kasai. Permeability of mouse oocytes and embryos at various developmental stages to five cryoprotectants. J. Reprod. Dev. 51:235–246, 2005.

    Article  CAS  PubMed  Google Scholar 

  52. Porcu, E., and S. Venturoli. Progress with oocyte cryopreservation. Curr. Opin. Obstet. Gynecol. 18:273–279, 2006.

    Article  PubMed  Google Scholar 

  53. Rall, W. F., and G. M. Fahy. Ice-free cryopreservation of mouse embryos at −196-degrees-C by vitrification. Nature 313:573–575, 1985.

    Article  CAS  PubMed  Google Scholar 

  54. Ruffing, N. A., P. L. Steponkus, R. E. Pitt, and J. E. Parks. Osmometric behavior, hydraulic conductivity, and incidence of intracellular ice formation in bovine oocytes at different developmental stages. Cryobiology 30:562–580, 1993.

    Article  CAS  PubMed  Google Scholar 

  55. Schwartz, G. J., and K. R. Diller. Analysis of the water permeability of human granulocytes at subzero temperatures in the presence of extracellular ice. J. Biomech. Eng. 105:360–366, 1983.

    Article  CAS  PubMed  Google Scholar 

  56. Toner, M. Nucleation of ice crystals inside biological cells. Adv. Low-Temp. Biol. 2:1–51, 1993.

    Google Scholar 

  57. Toner, M., and E. G. Cravalho. Thermodynamics and kinetics of intracellular ice formation during freezing of biological cells. J. Appl. Phys. 67:1582–1593, 1990.

    Article  Google Scholar 

  58. Toner, M., E. G. Cravalho, and D. R. Armant. Water transport and estimated transmembrane potential during freezing of mouse oocytes. J. Membr. Biol. 115:261–272, 1990.

    Article  CAS  PubMed  Google Scholar 

  59. Toner, M., E. G. Cravalho, and M. Karel. Thermodynamics and kinetics of intracellular ice formation during freezing of biological cells. J. Appl. Phys. 67:1582–1593, 1990.

    Article  Google Scholar 

  60. Toner, M., E. G. Cravalho, M. Karel, and D. R. Armant. Cryomicroscopic analysis of intracellular ice formation during freezing of mouse oocytes without cryoadditives. Cryobiology 28:55–71, 1991.

    Article  CAS  PubMed  Google Scholar 

  61. Trounson, A., and L. Mohr. Human pregnancy following cryopreservation, thawing and transfer of an eight-cell embryo. Nature 305:707–709, 1983.

    Article  CAS  PubMed  Google Scholar 

  62. Vajta, G., and Z. P. Nagy. Are programmable freezers still needed in the embryo laboratory? Review on vitrification. Reprod. Biomed. Online 12:779–796, 2006.

    Article  PubMed  Google Scholar 

  63. Veres, M., A. R. Duselis, A. Graft, M. J. Dewey, J. Crossland, P. B. Vrana, and G. Szalai. The biology and methodology of assisted reproduction in deer mice (Peromyscus maniculatus). Theriogenology 2010 (under review).

  64. Yang, G., A. Zhang, L. X. Xu, and X. He. Modeling the cell-type dependence of diffusion-limited intracellular ice nucleation and growth during both vitrification and slow freezing. J. Appl. Phys. 105:114701–114711, 2009.

    Article  Google Scholar 

  65. Yarmush, M. L., M. Toner, J. C. Dunn, A. Rotem, A. Hubel, and R. G. Tompkins. Hepatic tissue engineering. Development of critical technologies. Ann. N. Y. Acad. Sci. 665:238–252, 1992.

    Article  CAS  PubMed  Google Scholar 

  66. Younis, A. I., M. Toner, D. F. Albertini, and J. D. Biggers. Cryobiology of non-human primate oocytes. Hum. Reprod. 11:156–165, 1996.

    CAS  PubMed  Google Scholar 

  67. Zhang, W., G. Yang, A. Zhang, L. X. Xu, and X. He. Preferential vitrification of water in small alginate microcapsules significantly augments cell cryopreservation by vitrification. Biomed. Microdevices 12:89–96, 2010.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was partially supported by the South Carolina Research Foundation (NSF RII # EPS-0447660), the Chinese Ministry of Education for a joint doctoral training program, and NIH/NCRR (#P40 RR014279). The authors would like to thank Kyle Gilstrap for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming He.

Additional information

Associate Editor Tingrui Pan oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, G., Veres, M., Szalai, G. et al. Biotransport Phenomena in Freezing Mammalian Oocytes. Ann Biomed Eng 39, 580–591 (2011). https://doi.org/10.1007/s10439-010-0158-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-0158-4

Keywords

Navigation