Skip to main content
Log in

Biaxial Response of Passive Human Cerebral Arteries

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The cerebral circulation is fundamental to the health and maintenance of brain tissue, but injury and disease may result in dysfunction of the vessels. Characterization of cerebral vessel mechanical response is an important step toward a more complete understanding of injury mechanisms and disease development in these vessels, paving the way for improved prevention and treatment. We recently reported a large series of uniaxial tests on fresh human cerebral vessels, but the multi-axial behavior of these vessels has not been previously described. Twelve arteries were obtained from the surface of the temporal lobe of patients undergoing surgery and were subjected to various combinations of axial stretch and pressure around typical physiological conditions before being stretched to failure. Axial and circumferential responses were compared, and measured data were fit to a four-parameter, Fung-type hyperelastic constitutive model. Artery behavior was nonlinear and anisotropic, with considerably greater resistance to deformation in the axial direction than around the circumference. Results from axial failure tests of pressurized vessels resulted in a small shift in stress–stretch response compared to previously reported data from unpressurized specimens. These results further define the biaxial response of the cerebral arteries and provide data required for more rigorous study of head injury mechanisms and development of cerebrovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Alcolado R., R. O. Weller, E. P. Parrish, D. Garrod, The cranial arachnoid and pia mater in man: anatomical and ultrastructural observations. Neuropathol. Appl. Neurobiol. 14: 1–17, 1988. doi:10.1111/j.1365-2990.1988.tb00862.x

    Article  PubMed  CAS  Google Scholar 

  2. Busby D., A. Burton. The effect of age on the elasticity of the major brain arteries. Can. J. Physiol. Pharmacol. 43: 185–202, 1965

    PubMed  CAS  Google Scholar 

  3. Chalupnik, J., C. Daly, and H. Merchant. Material properties of cerebral blood vessels. Technical Report, University of Washington, Seattle, 1971

  4. Chuong C. J., Y. C. Fung. On residual stresses in arteries. J. Biomech. Eng. 108: 189–192, 1986

    Article  PubMed  CAS  Google Scholar 

  5. Finkelstein E., P. S. Corso, T. R. Miller. The Incidence and Economic Burden of Injuries in the United States. New York: Oxford University Press, 2006, 187 pp

    Google Scholar 

  6. Finlay H. M., L. McCullough, P. B. Canham. Three-dimensional collagen organization of human brain arteries at different transmural pressures. J. Vasc. Res. 32: 301–312, 1995

    PubMed  CAS  Google Scholar 

  7. Gleason R. L., E. Wilson, J. D. Humphrey. Biaxial biomechanical adaptations of mouse carotid arteries cultured at altered axial extension. J. Biomech. 40: 766–776 2007. doi:10.1016/j.jbiomech.2006.03.018

    Article  PubMed  Google Scholar 

  8. Graham D. I., Neuropathology of head injury In: Neurotrauma, eds by R. K. Nrayan, J. E. Wilberger, J. T. Povlishock. New York: McGraw-Hill, 1996, pp. 43–59

    Google Scholar 

  9. Hayashi K., H. Handa, S. Nagasawa, A. Okumura, K. Moritake. Stiffness and elastic behavior of human intracranial and extracranial arteries. J. Biomech. 13: 175–179, 1980. doi:10.1016/0021-9290(80)90191-8

    Article  PubMed  CAS  Google Scholar 

  10. Holzapfel G. A., T. C. Gasser, R. W. Ogden. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61: 1–48, 2000. doi:10.1023/A:1010835316564

    Article  Google Scholar 

  11. Humphrey J. D. An evaluation of pseudoelastic descriptors used in arterial mechanics. J. Biomech. Eng. 121: 259–262, 1999. doi:10.1115/1.2835113

    Article  PubMed  CAS  Google Scholar 

  12. Humphrey J. D. Cardiovascular Solid Mechanics: Cells, Tissues, and Organs. New York: Springer, 2002, 757 pp

    Google Scholar 

  13. Humphrey J., F. Yin. Fiber-induced material behavior in composites. Mech. Res. Commun. 13: 277–284, 1986. doi:10.1016/0093-6413(86)90069-8

    Article  Google Scholar 

  14. Janz R. F., S. Ozpetek, L. E. Ginzton, M. M. Laks. Regional stress in a noncircular cylinder. Biophys. J. 55: 173–182, 1989

    PubMed  CAS  Google Scholar 

  15. Langlois, J. A., W. Rutland-Brown, and K. E. Thomas. Traumatic Brain Injury in the United States: Emergency Department Visits, Hospitalizations, and Deaths. Centers for Disease Control and Prevention, National Center for Injury Prevention and Control, Atlanta, 2006

  16. Monson K. L., W. Goldsmith, N. M. Barbaro, G. T. Manley. Axial mechanical properties of fresh human cerebral blood vessels. J. Biomech. Eng. 125: 288–294, 2003. doi:10.1115/1.1554412

    Article  PubMed  Google Scholar 

  17. Monson K. L., W. Goldsmith, N. M. Barbaro, G. T. Manley. Significance of source and size in the mechanical response of human cerebral blood vessels. J. Biomech. 38: 737–744, 2005. doi:10.1016/j.jbiomech.2004.05.004

    Article  PubMed  Google Scholar 

  18. Rosamond W., K. Flegal, K. Furie, A. Go, K. Greenlund, N. Haase, S. M. Hailpern, M. Ho, V. Howard, B. Kissela, S. Kittner, D. Lloyd-Jones, M. McDermott, J. Meigs, C. Moy, G. Nichol, C. O’Donnell, V. Roger, P. Sorlie, J. Steinberger, T. Thom, M. Wilson, Y. Hong. Heart disease and stroke statistics-2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 117: e25–146, 2008. doi:10.1161/CIRCULATIONAHA.107.187998

    Article  PubMed  Google Scholar 

  19. S.A.E. Instrumentation for impact test. Part 1: electronic instrumentation, SAE J211-1. In: SAE Handbook, edited by SAE. Warrendale, PA: Society of Automotive Engineers, 1995, pp. 384–392

  20. Schulze-Bauer C. A., C. Morth, G. A. Holzapfel. Passive biaxial mechanical response of aged human iliac arteries. J. Biomech. Eng. 125: 395–406, 2003. doi:10.1115/1.1574331

    Article  PubMed  Google Scholar 

  21. Vaishnav R. N., J. T. Young, D. J. Patel. Distribution of stresses and of strain-energy density through the wall thickness in a canine aortic segment. Circ. Res. 32: 577–583, 1973

    PubMed  CAS  Google Scholar 

  22. Weizsacker H. W., J. G. Pinto. Isotropy and anisotropy of the arterial wall. J. Biomech. 21: 477–487, 1988. doi:10.1016/0021-9290(88)90240-0

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Funding for this study was provided by the Centers for Disease Control and Prevention (R49 CE000460) and the National Institutes of Health (1K25HD048643-01A1). The authors would like to express their appreciation to the fellows and residents of the UCSF Neurosurgery Department, in particular Karl Sillay, M.D., and Paul House, M.D., who assisted in the surgical acquisition of tissue. We also greatly appreciate the help of Tyler Siebert and Aaron Rutman in tissue acquisition and transport.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth L. Monson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monson, K.L., Barbaro, N.M. & Manley, G.T. Biaxial Response of Passive Human Cerebral Arteries. Ann Biomed Eng 36, 2028–2041 (2008). https://doi.org/10.1007/s10439-008-9578-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-008-9578-9

Keywords

Navigation