Skip to main content
Log in

Influence of Pulsatile Flow on LDL Transport in the Arterial Wall

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The accumulation of low-density lipoprotein (LDL) is one of the important factors in atherogenesis. Two different time scales may influence LDL transport in vivo: (1) LDL transport is coupled to blood flow with a pulse cycle of around 1 s in humans; (2) LDL transport within the arterial wall is mediated by transmural flow in the order of 10−8 m/s. Most existing models have assumed steady flow conditions and overlooked the interactions between physical phenomena with different time scales. The objective of this study was to investigate the influence of pulsatile flow on LDL transport and examine the validity of steady flow assumption. The effect of pulsatile flow on transmural transport was incorporated by using a lumen-free cyclic (LFC) and a lumen-free time-averaged (LFTA) procedures. It is found that the steady flow simulation predicted a focal distribution in the post-stenotic region, differing from the diffuse distribution pattern produced by the pulsatile flow simulation. The LFTA procedure, in which time-averaged shear-dependent transport properties calculated from instantaneous wall shear stress (WSS) were used, predicted a similar distribution pattern to the LFC simulations. We conclude that the steady flow assumption is inadequate and instantaneous hemodynamic conditions have important influence on LDL transmural transport in arterial geometries with disturbed and complicated flow patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Abbreviations

c :

concentration, mol m−3

D :

diffusivity, m2 s−1

J s :

solute flux across the endothelium, mol s−1 m−2

J v :

transmural velocity across the endothelium, m s−1

K :

solute lag coefficient

L p :

hydraulic conductivity of the endothelium, m s−1 Pa−1

p :

pressure, Pa

P :

permeability, m s−1

u :

velocity of blood flow, m s−1

κ:

Dacian permeability, m2

μ:

Pa s

ρ:

density, kg m−3

σ d :

osmotic reflection coefficient

σ f :

solvent reflection coefficient

t p :

cardiac cycle period, s

τ w :

wall shear stress, Pa

l :

blood lumen

w :

arterial wall

end :

endothelium

References

  1. Ai, L., Vafai, K. (2006) A coupling model for macromolecule transport in a stenosed arterial wall. Int. J. Heat. Mass Transfer 49:1568–1591

    Article  CAS  Google Scholar 

  2. Caro, C. (1973) Transport of 14c-4-cholesterol between intra-luminal serum and artery wall in isolated dog common carotid artery. J. Physiol. Lond. 233:37P–38P

    CAS  Google Scholar 

  3. Caro, C. (1974) Transport of 14c-4-cholesterol between perfusing serum and dog common carotid artery: a shear dependent process. Cardiovasc. Res. 8:194–203

    PubMed  CAS  Google Scholar 

  4. Caro, C. G., Fitz-Gerald, J. M., Schroter, R. C.(1971) Atheroma and arterial wall shear observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis. Proc. R. Soc. Lond. Ser. B Biol. Sci. 177:109–159

    Article  CAS  Google Scholar 

  5. Caro, C. G., Nerem, R. M. (1973) Transport of 14c-4-cholesterol between serum and wall in the perfused dog common carotid artery. Circ. Res. 32:187–205

    PubMed  CAS  Google Scholar 

  6. Colton, C. K., Friedman, S., Wilson, D. E., Lees, R. S. (1972) Ultrafiltration of lipoproteins through a synthetic membrane. Implications for the filtration theory of atherogenesis. J. Clin. Invest. 51:2472–2481

    Article  PubMed  CAS  Google Scholar 

  7. Curmi, P. A., Juan, L., Tedgui, A. (1990) Effect of transmural pressure on low density lipoprotein and albumin transport and distribution across the intact arterial wall. Circ. Res. 66:1692–1702

    PubMed  CAS  Google Scholar 

  8. DeMaio, L., Chang, Y. S., Gardner, T. W., Tarbell, J. M., Antonetti, D. A. (2001) Shear stress regulates occludin content and phosphorylation. Am. J. Physiol. Heart Circ. Physiol. 281:H105–H113

    PubMed  CAS  Google Scholar 

  9. Ethier, C. R. (2002) Computational modeling of mass transfer and links to atherosclerosis. Ann. Biomed. Eng. 30:461–471

    Article  PubMed  Google Scholar 

  10. Friedman, M. H., Fry, D. L. (1993). Arterial permeability dynamics and vascular disease. Atherosclerosis 104:189–194

    Article  PubMed  CAS  Google Scholar 

  11. Fry, D. L. (1968) Acute vascular endothelial changes associated with increased blood velocity gradient. Circ. Res. 22:165–197

    PubMed  CAS  Google Scholar 

  12. Hillsley, M. V., Tarbell, J. M. (2002) Oscillatory shear alters endothelial hydraulic conductivity and nitric oxide levels. Biochem. Biophys. Res. Commun. 293:1466–1471

    Article  PubMed  CAS  Google Scholar 

  13. Hoff, H. F., Heideman, C. L., Jackson, R. L., Bayardo, R. J., Kim, H. S., Gotto, A. M. J. (1975) Localization patterns of plasma apolipoproteins in human atherosclerotic lesions. Circ. Res. 37:72–79

    PubMed  CAS  Google Scholar 

  14. Karner, G., Perktold, K. (2000) Effect of endothelial injury and increased blood pressure on albumin accumulation in the arterial wall: A numerical study. J. Biomech. 33:709–715

    Article  PubMed  CAS  Google Scholar 

  15. Karner, G., Perktold, K., Zehentner, H. P. (2001) Computational modeling of macromolecule transport in the arterial wall. Comput. Methods Biomech. Biomed. Eng. 4:491–504

    Article  Google Scholar 

  16. Kedem, O., Katchalsky, A. (1958) Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochem. Biophys. Acta 27:229–246

    Article  PubMed  CAS  Google Scholar 

  17. Long, Q., Xu, X. Y., Ramnarine, K. V., Hoskins, P. (2001) Numerical investigation of physiologically realistic pulsatile flow through arterial stenosis. J. Biomech. 34:1229–1242

    Article  PubMed  CAS  Google Scholar 

  18. Meyer, G., Merval, R., Tedgui, A. (1996) Effects of pressure-induced stretch and convection on low-density lipoprotein and albumin uptake in the rabbit aortic wall. Circ. Res.79:532–540

    PubMed  CAS  Google Scholar 

  19. Ogunrinade, O., Kameya, G. T., Truskey, G. A. (2002) Effect of fluid stress on the permeability of the arterial endothelium. Ann. Biomed. Eng. 30:430–446

    Article  PubMed  Google Scholar 

  20. Ojha, M., Cobbold, R. S. C., Johnston, K. W., Hummel, R. L. (1989) Pulsatile flow through constricted tubes: an experimental investigation using photochromic tracer methods. J. Fluid Mech. 203:173–197

    Article  CAS  Google Scholar 

  21. Pappenheimer, J. R., Renkin, E. M., Borrero, L. M. (1951) Filtration, diffusion and molecular sieving through peripheral capillary membranes. A contribution to the pore theory of capillary permeability. Am. J. Physiol. 167:13–45

    PubMed  CAS  Google Scholar 

  22. Prosi, M. Computer Simulation von Massetransportvorgängen in Arterien. Ph.D. thesis, Technischen Universität Graz, 2003

  23. Prosi, M., Zunino, P., Perktold, K., Quarteroni, A. (2005) Mathematical and numerical models for transfer of low-density lipoproteins through the arterial wall: a new methodology for the model set up with applications to the study of disturbed lumenal flow. J. Biomech. 38:903–917

    Article  PubMed  CAS  Google Scholar 

  24. Rappitsch, G., Perktold, K. (1996) Computer simulation of convective diffusion processes in large arteries. J. Biomech. 29:207–215

    Article  PubMed  CAS  Google Scholar 

  25. Rappitsch, G., Perktold, K. (1996) Pulsatile albumin transport in large arteries: a numerical simulation study. ASME J. Biomech. Eng. 118:511–519

    CAS  Google Scholar 

  26. Rappitsch, G., Perktold, K., Pernkopf, E. (1997) Numerical modelling of shear-dependent mass transfer in large arteries. Int. J. Numer. Methods Fluids 25:847–857

    Article  Google Scholar 

  27. Ross, R. (1993) Atherosclerosis: a defense mechanism gone awry. Am. J. Pathol. 143:987–1002

    PubMed  CAS  Google Scholar 

  28. Sill, H. W., Chang, Y. S., Artman, J. R., Frangos, J. A., Hollis, T. M., Tarbell, J. M. (1995) Shear stress increases hydraulic conductivity of cultured endothelial monolayers. Am. J. Physiol. Heart Circ. Physiol. 268:535–543

    Google Scholar 

  29. Stangeby, D. K., Ethier, C. R. (2002) Computational analysis of coupled blood-wall arterial LDL transport. ASME J. Biomech. Eng. 124:1–8

    Article  Google Scholar 

  30. Stangeby, D. K., Ethier, C. R. (2002) Coupled computational analysis of arterial LDL transport – effects of hypertension. Comput. Methods Biomech. Biomed. Eng. 5:233–241

    Article  Google Scholar 

  31. Sun, N., N. B. Wood, A. D. Hughes, S. A. M. Thom, and X. Y. Xu (2006) Fluid-wall modelling of mass transfer in an axisymmetric stenosis: effects of shear-dependent transport properties. Ann. Biomed. Eng. 34:1119 – 1128

    Article  PubMed  Google Scholar 

  32. Sun, N., N. B. Wood, A. D. Hughes, S. A. M. Thom, and X. Y. Xu. Effects of transmural pressure and wall shear stress on ldl accumulation in the arterial wall: a numerical study using a multi-layered model. Am. J. Physiol. Heart Circ. Physiol. 292:H3148–H3157, 2007

    Article  PubMed  CAS  Google Scholar 

  33. Tarbell, J. M. (2003) Mass transport in arteries and the localization of atherosclerosis. Annu. Rev. Biomed. Eng. 5:79–118

    Article  PubMed  CAS  Google Scholar 

  34. Wada, S., Karino, T. (1999) Theoretical study on flow-dependent concentration polarization of low density lipoproteins at the luminal surface of a straight artery. Biorheology 36:207–223

    PubMed  CAS  Google Scholar 

  35. Wada, S., Karino, T. (2002) Theoretical prediction of low-density lipoproteins concentration at the luminal surface of an artery with a multiple bend. Ann. Biomed. Eng. 30:778–791

    Article  PubMed  Google Scholar 

  36. Wada, S., Koujiya, M., Karino, T. (2002) Theoretical study of the effect of local flow disturbances on the concentration of low-density lipoproteins at the luminal surface of end-to-end anastomosed vessels. Med. Biol. Eng. Comput. 40:576–587

    Article  PubMed  CAS  Google Scholar 

  37. Yang, N., Vafai, K. (2006) Modeling of low-density lipoprotein (LDL) transport in the artery-effects of hypertension. Int. J. Heat. Mass Transfer 49:850–867

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Leverhulme Trust (F07058/AA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nanfeng Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, N., Wood, N.B., Hughes, A.D. et al. Influence of Pulsatile Flow on LDL Transport in the Arterial Wall. Ann Biomed Eng 35, 1782–1790 (2007). https://doi.org/10.1007/s10439-007-9347-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-007-9347-1

Keywords

Navigation