Skip to main content
Log in

The Brain Computer Interface Using Flash Visual Evoked Potential and Independent Component Analysis

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In this study flashing stimuli, such as digits or letters, are displayed on a LCD screen to induce flash visual evoked potentials (FVEPs). The aim of the proposed interface is to generate desired strings while one stares at target stimulus one after one. To effectively extract visually-induced neural activities with superior signal-to-noise ratio, independent component analysis (ICA) is employed to decompose the measured EEG and task-related components are subsequently selected for data reconstruction. In addition, all the flickering sequences are designed to be mutually independent in order to remove the contamination induced by surrounding non-target stimuli from the ICA-recovered signals. Since FVEPs are time-locked and phase-locked to flash onsets of gazed stimulus, segmented epochs from ICA-recovered signals based on flash onsets of gazed stimulus will be sharpen after averaging whereas those based on flash onsets of non-gazed stimuli will be suppressed after averaging. The stimulus inducing the largest averaged FVEPs is identified as the gazed target and corresponding digit or letter is sent out. Five subjects were asked to gaze at each stimulus. The mean detection accuracy resulted from averaging 15 epochs was 99.7%. Another experiment was to generate a specified string ‘0287513694E’. The mean accuracy and information transfer rates were 83% and 23.06 bits/min, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1.
FIGURE 2.
FIGURE 3.
FIGURE 4.
FIGURE 5.
FIGURE 6.
FIGURE 7.
FIGURE 8.
FIGURE 9.
FIGURE 10.
FIGURE 11.
FIGURE 12.

Similar content being viewed by others

References

  1. Birbaumer N., Flor H., Ghanayim N., Hinterberger T., Iverson I., Taub E., Kotchoubey B., Kubler A., Perelmouter J., (1999) A spelling device for the paralyzed Nature 398:297–298

    Article  PubMed  CAS  Google Scholar 

  2. Cheng M., Gao X., Gao S., Xu D., (2002) Design and implementation of a brain-computer interface with high transfer rates IEEE T. Bio-Med Eng. 10: 1181–1186

    Article  Google Scholar 

  3. Donchin E, Spencer K. M., Wilesinghe R., (2000) The mental prosthesis: Assessing the speed of a P300-based brain-computer interface IEEE T. Rehabil. Eng. 8:174–179

    Article  CAS  Google Scholar 

  4. Duann J. R., Jung T. P., Kuo W. J., Yeh T. C., Makeig S., Hsieh J. C., Sejnowski T. J., (2002) Single-trial variability in event-related BOLD signals Neuroimage 15: 825–835

    Article  Google Scholar 

  5. Hung C. I., Lee P. L., Wu Y. T., Chen L. F., Yeh T. C., Hsieh J. C. (2005) Recognition of motor imagery electroencephalography using independent component analysis and machine classifiers. Ann. Biomed. Eng. 33: 1053–1070

    Article  PubMed  Google Scholar 

  6. Hyvarinen, A., J. Karhunen, and E. Oja. Independent component analysis. New York: Wiley, New York, 2001.

  7. Hyvarinen A., Oja E., (1997) A fast fixed-point algorithm for independent component analysis Neural Comput. 9: 1483–1492

    Article  Google Scholar 

  8. Jung T. P., Makeig S., Westerfield M., Townsend J., Courchesne E., Sejnowski J. T., (2001) Analysis and visualization of single-trial event-related potentials Hum. Brain Mapp. 14: 166–185

    Article  PubMed  CAS  Google Scholar 

  9. Kao Y. H., Guo W. Y., Wu Y. T., Liu K. C., Chai W. Y., Lin C. Y., Hwang Y. H., Liou A. J. K., Cheng H. C., Yeh T. C., Hsieh J. C., Teng M. M. H., (2003) Hemodynamic segmentation of MR brain perfusion images using independent component, thresholding and Bayesian estimation Magn. Reson. Med. 49: 885–894

    Article  PubMed  Google Scholar 

  10. Lee P. L., Wu Y. T., Chen L. F., Chen Y. S., Cheng C. M., Yeh T. C., Ho L. T., Chang M. S., Hsieh J. C., (2003) ICA-based spatiotemporal approach for signle-trial analysis of post-movement MEG beta synchronization Neuroimage 20: 2010–2030

    Article  PubMed  Google Scholar 

  11. Makeig S., Jung T. P., Bell A. J., Ghahremani D., Sejnowski T., (1997) Blind separation of auditory event-related brain responses into independent components Proc. Natl. Acad. Sci. USA. 94:10979–10984

    Article  PubMed  CAS  Google Scholar 

  12. Mason S. G., Birch G. E., (2000) A brain-controlled switch for asynchronous control applications IEEE T. Bio-Med Eng. 47: 1297–1307

    Article  CAS  Google Scholar 

  13. McKeown M. J., Makeig S., Brown G. G., Jung T. P., Kindermann S. S., Bell A. J., Sejnowski T. J., (1998) Analysis of fMRI data by blind separation into independent spatial components Hum. Brain Mapp. 6: 160–188

    Article  PubMed  CAS  Google Scholar 

  14. McKeown M., Radtke R., (2001) Phasic and tonic coupling between EEG and EMG demonstrated with independent component analysis J. Clin. Neurophysiol. 18: 45–47

    Article  PubMed  CAS  Google Scholar 

  15. McSherry J. W., Walters C. L., Horbar J. D., (1982) Acute visual evoked potential changes in hydrocephalus Electroen. Clin. Neuro. 53: 331–333

    Article  CAS  Google Scholar 

  16. Muller-Gerking J., Pfurtscheller G., Flyvbjerg H., (1999) Designing optimal spatial filters for single-trial EEG classification in a movement task Clin. Neurophysiol. 110: 787–798

    Article  PubMed  CAS  Google Scholar 

  17. Odom J. V., Bach M., Barber C., Brigell M., Marmor M. F., Tormene A. P., Holder G. E., (2004) Vaegan: Visual evoked potentials standard (2004). Doc. Ophthalmol. 108: 115–123

    Article  PubMed  Google Scholar 

  18. Pfurtscheller G., Neuper C., Guger C., Harkam W., Ramoser H., Schlogl A., Obermaier B., Pregenzer M., (2000) Current trends in Graz brain-computer interface (BCI) research IEEE T. Rehabil. Eng. 8: 216–219

    Article  CAS  Google Scholar 

  19. Spehlmann, R. “Evoked potential primer.” In: The transient VEP to diffuse light simuli, edited by Misulis, K. E., and T. Fakhoury. Stoneham: Butterworth publishers, 1985, pp. 135–142.

  20. Spehlmann, R. “Evoked potential primer.” In: VEPs to other stimuli, edited by Misulis, K. E., and T. Fakhoury. Stoneham: Butterworth publishers, 1985, pp. 144–158.

  21. Sutter E. E., (1992) The brain response interface: Communication through visually-induced electrical brain responses J. Microcomput. Appl. 15: 31–45

    Article  Google Scholar 

  22. Raitta C., Karhunene U., Seppalainen A. M., Naukkarinen M., (1979) Changes in the electroretinogram and visual evoked potentials during general anaesthesia. Albrecht von Graefes Arch Klin. Exp. Ophthalmol. 211: 139–144

    Article  CAS  Google Scholar 

  23. Reilly E. L., Kondo C., Brunberg J. A., Doty D. B., (1978) Visual evoked potentials during hypothermia and prolonged circulatory arrest Electroen. Clin. Neuro. 45: 100–106

    Article  CAS  Google Scholar 

  24. Tang A. C., Pearlmutter B. A., Malaszenko N. A., Phung D. B., (2002) Independent components of magnetoencephalography: Single-trial response onset times Neuroimage 17: 1773–1789

    Article  PubMed  Google Scholar 

  25. Tesche C. D., Unsitalo M. A., Ilmoniemi R. J., Huotilainen M., Kajola M., Salonen O., (1995) Signal-space projections of MEG data characterize both distributed and well-localized neuroal sources Electroencephalogr. Clin. Neurophysiol. 95: 189–200

    Article  PubMed  CAS  Google Scholar 

  26. Trojaborg W., Jorgensen E. O., (1973) Evoked cortical potentials in patients with “isoelectric” EEGs Electroen. Clin. Neuro. 35: 301–309

    Article  CAS  Google Scholar 

  27. Uhl R. R., Squires K. C., Bruce D. L., Starr A., (1980) Effect of halothane anesthesia on the human cortical visual evoked response Anesthesiology 53: 273–276

    Article  PubMed  CAS  Google Scholar 

  28. Wilson W. B. (1978) Visual-evoked response differentiation of ischemic optic neuritis from the optic neuritis of multiple sclerosis Am. J. Ophthalmol. 86: 530–535

    PubMed  CAS  Google Scholar 

  29. Wolpaw J. R., Birbaumer N., McFarland D. J., Pfurtscheller G., Vaughan T. M., (2002) Brain-computer interfaces for communication and control Clin. Neurophysiol. 113: 767–791

    Article  PubMed  Google Scholar 

  30. York D. H., Pulliam M. W., Rosenfeld J. G., Watts C., (1981) Relationship between visual evoked potentials and intracranial pressure J. Neurosurg. 55: 909–916

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the National Central University, National Science Council (94-2218-E-008-013, 94-2218-E-010-004) and National Health Research Institutes (NHRI-EX94-CD9401) of Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Te Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, PL., Hsieh, JC., Wu, CH. et al. The Brain Computer Interface Using Flash Visual Evoked Potential and Independent Component Analysis. Ann Biomed Eng 34, 1641–1654 (2006). https://doi.org/10.1007/s10439-006-9175-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-006-9175-8

Keywords

Navigation