Skip to main content
Log in

Seal types of water-entry cavities generated by the impact of spheres with decreasing Bond number

随着邦德数减小球体入水空泡闭合类型的探究

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The evolution of water-entry cavities gives rise to interesting dynamic phenomena that occur in nature and engineering fields. The evolution and seal types of the cavities remain unsettled at Bo less than 10−2 since it is difficult to propel a small sphere to impact a water surface at high speed. In the present study, an experiment based on the laserdriven principle is conducted to accelerate a small sphere to hundreds m/s. The types of cavity seal are classified as quasi-static, shallow seal, deep seal, and surface seal within a Bo range of 1–7.57×10−2. The transition mechanism from a shallow seal to a deep seal is investigated by analyzing the cross-sectional characteristics of cavity necks. With a further decrease in Bo (5.69×10−2–8.41×10−3), the shallow seal is changed directly to a surface seal since the pinch-off time of the cross section at the cavity neck decreases with Bo, and hence, the deep seal disappears. Finally, a parameter study is conducted by varying We and Bo in the air cavity. Two boundaries are obtained: We ≈ 64 for the transition between quasi-static and shallow seals and We ≈ 326 for the transition between shallow seals and surface seals.

摘要

入水空泡的演化在自然界和工程领域中出现了有趣的动态现象. 由于很难推动一个小球高速撞击水面, 因此空泡的演化和闭合类型在Bo小于10−2时仍未得到解决. 在本研究中, 进行了一个基于激光驱动原理的实验, 可将小球体加速到数百米每秒. 在1~7.57×10−2的Bo范围内, 空泡闭合类型可分为准静态、浅闭合、深闭合和表面闭合. 通过分析空泡颈部的横截面特征, 研究了从浅闭合到深闭合的过渡机制. 随着Bo值的进一步降低(5.69×10−2~8.41×10−3), 浅闭合直接转变为表面闭合, 因为颈部横截面的夹断时间随着Bo值的降低而降低, 因此, 深闭合消失了. 最后, 通过改变We和Bo进行参数研究, 得到了两个边界. We≈64是准静态和浅闭合之间的过渡, We≈326是浅闭合和表面闭合之间的过渡.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. W. Johnson, The ricochet of spinning and non-spinning spherical projectiles, mainly from water. Part II: An outline of theory and warlike applications, Int. J. Impact Eng. 21, 25 (1998).

    Article  Google Scholar 

  2. T. T. Truscott, Cavity Dynamics of Water Entry for Spheres and Ballistic Projectiles, Dissertation for Doctoral Degree, (Massachusetts Institute of Technology, Cambridge, 2009).

    Google Scholar 

  3. C. M. Seddon, and M. Moatamedi, Review of water entry with applications to aerospace structures, Int. J. Impact Eng. 32, 1045 (2006).

    Article  Google Scholar 

  4. S. Abrate, Hull slamming, Appl. Mech. Rev. 64, 060803 (2011).

    Article  Google Scholar 

  5. J. W. M. Bush, and D. L. Hu, Walking on water: Biolocomotion at the interface, Annu. Rev. Fluid Mech. 38, 339 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  6. J. W. M. Bush, D. L. Hu, and M. Prakash, The integument of water-walking arthropods: Form and function, Adv. Insect Physiol. 34, 117 (2007).

    Article  Google Scholar 

  7. J. W. Glasheen, and T. A. McMahon, Vertical water entry of disks at low Froude numbers, Phys. Fluids 8, 2078 (1996).

    Article  Google Scholar 

  8. M. Lee, R. G. Longoria, and D. E. Wilson, Cavity dynamics in high-speed water entry, Phys. Fluids 9, 540 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  9. R. Bergmann, D. van der Meer, M. Stijnman, M. Sandtke, A. Prosperetti, and D. Lohse, Giant bubble pinch-off, Phys. Rev. Lett. 96, 154505 (2006).

    Article  Google Scholar 

  10. V. Duclaux, F. Caillé, C. Duez, C. Ybert, L. Bocquet, and C. Clanet, Dynamics of transient cavities, J. Fluid Mech. 591, 1 (2007).

    Article  MATH  Google Scholar 

  11. T. Grumstrup, J. B. Keller, and A. Belmonte, Cavity ripples observed during the impact of solid objects into liquids, Phys. Rev. Lett. 99, 114502 (2007).

    Article  Google Scholar 

  12. S. Gekle, A. van der Bos, R. Bergmann, D. van der Meer, and D. Lohse, Noncontinuous Froude number scaling for the closure depth of a cylindrical cavity, Phys. Rev. Lett. 100, 084502 (2008).

    Article  Google Scholar 

  13. T. T. Truscott, and A. H. Techet, Water entry of spinning spheres, J. Fluid Mech. 625, 135 (2009).

    Article  MATH  Google Scholar 

  14. J. M. Aristoff, T. T. Truscott, A. H. Techet, and J. W. M. Bush, The water entry of decelerating spheres, Phys. Fluids 22, 032102 (2010).

    Article  MATH  Google Scholar 

  15. Y. Jiang, T. Bai, Y. Gao, and L. Guan, Water entry of a constraint posture body under different entry angles and ventilation rates, Ocean Eng. 153, 53 (2018).

    Article  Google Scholar 

  16. Q. Yang, F. Xu, Y. Yang, J. Wang, A. Wang, and C. Ma, Numerical study on the dynamic characteristics of water entry of cavity body using two-phase SPH method, Acta Mech. Sin. 37, 1072 (2021).

    Article  MathSciNet  Google Scholar 

  17. D. Vella, and P. D. Metcalfe, Surface tension dominated impact, Phys. Fluids 19, 072108 (2007).

    Article  MATH  Google Scholar 

  18. D. G. Lee, and H. Y. Kim, Impact of a superhydrophobic sphere onto water, Langmuir 24, 142 (2008).

    Article  Google Scholar 

  19. J. Xie, C. Li, T. Yang, Z. Fu, and R. Li, The motion behavior of micron fly-ash particles impacting on the liquid surface, ACS Omega 7, 29813 (2022).

    Article  Google Scholar 

  20. H. Li, H. Chen, E. Q. Li, C. Y. Zhang, and H. Ding, Impact of superhydrophobic sphere onto a pool covered by oil layer, Phys. Fluids 34, 032111 (2022).

    Article  Google Scholar 

  21. C. Duez, C. Ybert, C. Clanet, and L. Bocquet, Making a splash with water repellency, Nat. Phys. 3, 180 (2007).

    Article  Google Scholar 

  22. J. M. Aristoff, and J. W. M. Bush, Water entry of small hydrophobic spheres, J. Fluid Mech. 619, 45 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  23. H. Li, S. S. Ji, X. Tan, Z. Li, Y. Xiang, P. Lv, and H. Duan, Effect of Reynolds number on drag reduction in turbulent boundary layer flow over liquid-gas interface, Phys. Fluids 32, 122111 (2020).

    Article  Google Scholar 

  24. H. Ding, B. Q. Chen, H. R. Liu, C. Y. Zhang, P. Gao, and X. Y. Lu, On the contact-line pinning in cavity formation during solid-liquid impact, J. Fluid Mech. 783, 504 (2015).

    Article  Google Scholar 

  25. C. Huang, X. Wen, and M. Liu, Study on low-speed water entry of super-hydrophobic small spheres, Chin. J. Theor. Appl. Mech. 51, 36 (2019).

    Google Scholar 

  26. K. Choi, N. Kim, G. Seon, W. Hwang, and H. Park, Laser-induced control of a cavity bubble behind a sinking sphere in water entry: Dependency on the surface temperature and impact velocity, Phys. Fluids 31, 122105 (2019).

    Article  Google Scholar 

  27. S. D. Guleria, A. Dhar, and D. V. Patil, Experimental insights on the water entry of hydrophobic sphere, Phys. Fluids 33, 102109 (2021).

    Article  Google Scholar 

  28. H. S. Yoo, H. Y. Choi, T. H. Kim, and E. S. Kim, Effect of wettability on the water entry of spherical projectiles: Numerical analysis using smoothed particle hydrodynamics, AIP Adv. 12, 035014 (2022).

    Article  Google Scholar 

  29. H. Li, Z. Li, X. Tan, X. Wang, S. Huang, Y. Xiang, P. Lv, and H. Duan, Three-dimensional backflow at liquid-gas interface induced by surfactant, J. Fluid Mech. 899, A8 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  30. J. Eshraghi, S. Jung, and P. P. Vlachos, To seal or not to seal: The closure dynamics of a splash curtain, Phys. Rev. Fluids 5, 104001 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12293000, 12293003, 12293004, 12122214, and 12272382), and the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2022019).

Author information

Authors and Affiliations

Authors

Contributions

Wang Yiwei raised the question and proposed the overall research objective. Wang Jingzhu proposed the overall research method and set up the experiment set-up. Zhong Yuxue and Du Yan conducted an experimental study. Qiu Rundi processed the experiment data and conducted analysis. Zhong Yuxue and Wang Zhiying wrote the first draft of the manuscript. Huang Jian and Xiao Zhijian revised and edited the final version.

Corresponding author

Correspondence to Jingzhu Wang  (王静竹).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, Y., Du, Y., Qiu, R. et al. Seal types of water-entry cavities generated by the impact of spheres with decreasing Bond number. Acta Mech. Sin. 39, 322482 (2023). https://doi.org/10.1007/s10409-023-22482-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-023-22482-x

Keywords

Navigation