Skip to main content
Log in

Towards SPH simulations of cavitating flows with an EoSB cavitation model

光滑粒子流体动力学框架下的EoSB空化模型及空化流动数值 模拟研究

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The smoothed particle hydrodynamics (SPH) research community has pursued simulating cavitating flows during the past decades, but so far there are no accurate and stable SPH-based cavitation models. This paper aims to present an attempt to predict cavitation phenomena within the SPH framework. To this end, an equation-of-state-based (EoSB) cavitation model is proposed in the SPH context to capture the inception and development of cavitating flows. In particular, the SPH technique named volume adaptive scheme (VAS) is employed to guarantee isotropic particle distribution when cavitating regions rapidly expand or shrink. Besides, with the purpose of preventing particle clumping and avoiding spurious flow voids induced by negative pressures, two SPH techniques called particle shifting technique (PST) and tensile instability control (TIC) are respectively adopted in the SPH model to further improve the numerical accuracy and stability. Finally, in order to make the present SPH model more applicable to problems with a high Reynolds number, a large eddy simulation (LES) model is also employed to take turbulence effects into account. It is evidently demonstrated that the present SPH model can provide a basically accurate prediction for several cavitation phenomena including cavitating areas and pressure distributions.

摘要

过去十余年来, 光滑粒子流体动力学(Smoothed Particle Hydrodynamics, SPH)研究领域一直在探索空化流动的数值模拟, 但迄 今为止依然没有精确且稳定的SPH空化模型. 本文将阐述一种在SPH框架内实现空化流动模拟的数值方法. 首先, 为了捕捉空化初生及 其发展, 本文在SPH框架内提出一种基于状态方程的相变模型. 特别地, 本文还引入一种粒子体积自适应算法(Volume Adaptive Scheme, VAS), 以保证空化区域流体剧烈膨胀时粒子体积分布的均一性. 此外, 本文还采用粒子位移修正技术(Particle Shifting Technique, PST)和张力不稳定性控制技术(Tensile Instability Control, TIC)以提高粒子分布质量和抑制数值空洞的产生. 最后, 本文还通过引入大涡 模拟(Large Eddy Simulation, LES)模型以考虑湍流效应, 提高本文提出的SPH空化模型对高雷诺数流动的适用性. 研究结果表明, 本文 提出的基于SPH方法的新空化模型能实现空化区域和压力分布等问题的精确预报.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. S. Plesset, and A. Prosperetti, Bubble dynamics and cavitation, Annu. Rev. Fluid Mech. 9, 145 (1977).

    Article  MATH  Google Scholar 

  2. D. Dowson, and C. M. Taylor, Cavitation in bearings, Annu. Rev. Fluid Mech. 11, 35 (1979).

    Article  Google Scholar 

  3. R. E. A. Arndt, Cavitation in fluid machinery and hydraulic structures, Annu. Rev. Fluid Mech. 13, 273 (1981).

    Article  Google Scholar 

  4. R. E. A. Arndt, Cavitation in vortical flows, Annu. Rev. Fluid Mech. 34, 143 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  5. C. C. Coussios, and R. A. Roy, Applications of acoustics and cavitation to noninvasive therapy and drug delivery, Annu. Rev. Fluid Mech. 40, 395 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  6. J. P. Padilla-Martinez, C. Berrospe-Rodriguez, G. Aguilar, J. C. Ramirez-San-Juan, and R. Ramos-Garcia, Optic cavitation with CW lasers: A review, Phys. Fluids 26, 122007 (2014).

    Article  Google Scholar 

  7. L. d’Agostino, and M. V. Salvetti, Fluid dynamics of cavitation and cavitating turbopumps (Springer Science & Business Media, Berlin, 2008).

    MATH  Google Scholar 

  8. J. E. Kerwin, Marine propellers, Annu. Rev. Fluid Mech. 18, 367 (1986).

    Article  Google Scholar 

  9. X. Luo, B. Ji, and Y. Tsujimoto, A review of cavitation in hydraulic machinery, J. Hydrodyn. 28, 335 (2016).

    Article  Google Scholar 

  10. S. L. Ceccio, Friction drag reduction of external flows with bubble and gas injection, Annu. Rev. Fluid Mech. 42, 183 (2010).

    Article  Google Scholar 

  11. T. T. Truscott, B. P. Epps, and J. Belden, Water entry of projectiles, Annu. Rev. Fluid Mech. 46, 355 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Karn, R. E. A. Arndt, and J. Hong, An experimental investigation into supercavity closure mechanisms, J. Fluid Mech. 789, 259 (2016).

    Article  Google Scholar 

  13. J. Chung, and Y. Cho, Ventilated supercavitation around a moving body in a still fluid: Observation and drag measurement, J. Fluid Mech. 854, 367 (2018).

    Article  Google Scholar 

  14. M. Dreyer, J. Decaix, C. Münch-Alligné, and M. Farhat, Mind the gap: A new insight into the tip leakage vortex using stereo-PIV, Exp. Fluids 55, 1849 (2014).

    Article  Google Scholar 

  15. Z. Pan, A. Kiyama, Y. Tagawa, D. J. Daily, S. L. Thomson, R. Hurd, and T. T. Truscott, Cavitation onset caused by acceleration, Proc. Natl. Acad. Sci. USA 114, 8470 (2017).

    Article  Google Scholar 

  16. A. Amini, M. Reclari, T. Sano, M. Iino, M. Dreyer, and M. Farhat, On the physical mechanism of tip vortex cavitation hysteresis, Exp. Fluids 60, 118 (2019).

    Article  Google Scholar 

  17. W. Wang, T. Tang, Q. D. Zhang, X. F. Wang, Z. Y. An, T. H. Tong, and Z. J. Li, Effect of water injection on the cavitation control: Experiments on a NACA66 (MOD) hydrofoil, Acta Mech. Sin. 36, 999 (2020).

    Article  Google Scholar 

  18. Q. Chen, Y. Liu, Q. Wu, Y. Wang, T. Liu, and G. Wang, Global cavitation patterns and corresponding hydrodynamics of the hydrofoil with leading edge roughness, Acta Mech. Sin. 36, 1202 (2020).

    Article  Google Scholar 

  19. J. P. Franc, and J. M. Michel, Fundamentals of Cavitation, vol. 76 (Springer science & Business media, Berlin, 2006).

    MATH  Google Scholar 

  20. C. E. Brennen, Cavitation and Bubble Dynamics (Cambridge University Press, Cambridge, 2014).

    MATH  Google Scholar 

  21. B. K. Sreedhar, S. K. Albert, and A. B. Pandit, Cavitation damage: Theory and measurements-A review, Wear 372-373, 177 (2017).

    Article  Google Scholar 

  22. M. T. Gevari, T. Abbasiasl, S. Niazi, M. Ghorbani, and A. Koşar, Direct and indirect thermal applications of hydrodynamic and acoustic cavitation: A review, Appl. Thermal Eng. 171, 115065 (2020).

    Article  Google Scholar 

  23. H. Cheng, B. Ji, X. Long, W. Huai, and M. Farhat, A review of cavitation in tip-leakage flow and its control, J. Hydrodyn. 33, 226 (2021).

    Article  Google Scholar 

  24. H. Cheng, X. Long, B. Ji, X. Peng, and M. Farhat, LES investigation of the influence of cavitation on flow patterns in a confined tip-leakage flow, Ocean Eng. 186, 106115 (2019).

    Article  Google Scholar 

  25. H. Y. Cheng, X. R. Bai, X. P. Long, B. Ji, X. X. Peng, and M. Farhat, Large eddy simulation of the tip-leakage cavitating flow with an insight on how cavitation influences vorticity and turbulence, Appl. Math. Model. 77, 788 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  26. M. Xu, H. Cheng, B. Ji, and X. Peng, LES of tip-leakage cavitating flow with special emphasis on different tip clearance sizes by a new Euler-Lagrangian cavitation model, Ocean Eng. 213, 107661 (2020).

    Article  Google Scholar 

  27. B. Ji, X. Luo, R. E. A. Arndt, and Y. Wu, Numerical simulation of three dimensional cavitation shedding dynamics with special emphasis on cavitation-vortex interaction, Ocean Eng. 87, 64 (2014).

    Article  Google Scholar 

  28. C. Han, S. Xu, H. Cheng, B. Ji, and Z. Zhang, LES method of the tip clearance vortex cavitation in a propelling pump with special emphasis on the cavitation-vortex interaction, J. Hydrodyn. 32, 1212 (2020).

    Article  Google Scholar 

  29. Y. Long, X. Long, and B. Ji, LES investigation of cavitating flows around a sphere with special emphasis on the cavitation-vortex interactions, Acta Mech. Sin. 36, 1238 (2020).

    Article  MathSciNet  Google Scholar 

  30. J. Chen, B. Huang, T. Liu, Y. Wang, and G. Wang, Numerical investigation of cavitation-vortex interaction with special emphasis on the multistage shedding process, Appl. Math. Model. 96, 111 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  31. M. Morgut, E. Nobile, and I. Biluš, Comparison of mass transfer models for the numerical prediction of sheet cavitation around a hydrofoil, Int. J. Multiphase Flow 37, 620 (2011).

    Article  Google Scholar 

  32. J. Kim, and J. S. Lee, Numerical study of cloud cavitation effects on hydrophobic hydrofoils, Int. J. Heat Mass Transfer 83, 591 (2015).

    Article  Google Scholar 

  33. X. X. Peng, B. Ji, Y. Cao, L. Xu, G. Zhang, X. Luo, and X. Long, Combined experimental observation and numerical simulation of the cloud cavitation with U-type flow structures on hydrofoils, Int. J. Multiphase Flow 79, 10 (2016).

    Article  Google Scholar 

  34. T. Plewa, T. Linde, and V. G. Weirs, Adaptive Mesh Refinement-Theory and Applications (Springer, Berlin, 2005).

    Book  MATH  Google Scholar 

  35. C. Altomare, J. M. Domínguez, A. J. C. Crespo, J. González-Cao, T. Suzuki, M. Gómez-Gesteira, and P. Troch, Long-crested wave generation and absorption for SPH-based DualSPHysics model, Coast. Eng. 127, 37 (2017).

    Article  Google Scholar 

  36. H. Gotoh, and A. Khayyer, On the state-of-the-art of particle methods for coastal and ocean engineering, Coast. Eng. J. 60, 79 (2018).

    Article  Google Scholar 

  37. J. Huang, C. N. Chu, C. M. Fan, J. H. Chen, and H. Lyu, On the propagation of nonlinear water waves in a three-dimensional numerical wave flume using the generalized finite difference method, Eng. Anal. Bound. Elem. 119, 225 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  38. M. He, A. Khayyer, X. Gao, W. Xu, and B. Liu, Theoretical method for generating solitary waves using plunger-type wavemakers and its Smoothed Particle Hydrodynamics validation, Appl. Ocean Res. 106, 102414 (2021).

    Article  Google Scholar 

  39. M. Luo, A. Khayyer, and P. Lin, Particle methods in ocean and coastal engineering, Appl. Ocean Res. 114, 102734 (2021).

    Article  Google Scholar 

  40. P. Ropero-Giralda, A. J. C. Crespo, B. Tagliafierro, C. Altomare, J. M. Domínguez, M. Gómez-Gesteira, and G. Viccione, Efficiency and survivability analysis of a point-absorber wave energy converter using DualSPHysics, Renew. Energy 162, 1763 (2020).

    Article  Google Scholar 

  41. M. Brito, R. B. Canelas, O. García-Feal, J. M. Domínguez, A. J. C. Crespo, R. M. L. Ferreira, M. G. Neves, and L. Teixeira, A numerical tool for modelling oscillating wave surge converter with nonlinear mechanical constraints, Renew. Energy 146, 2024 (2020).

    Article  Google Scholar 

  42. C. Zhang, Y. Wei, F. Dias, and X. Hu, An efficient fully Lagrangian solver for modeling wave interaction with oscillating wave surge converter, Ocean Eng. 236, 109540 (2021).

    Article  Google Scholar 

  43. H. G. Lyu, P. N. Sun, X. T. Huang, S. Y. Zhong, Y. X. Peng, T. Jiang, and C. N. Ji, A review of SPH techniques for hydrodynamic simulations of ocean energy devices, Energies 15, 502 (2022).

    Article  Google Scholar 

  44. C. Meier, S. L. Fuchs, A. J. Hart, and W. A. Wall, A novel smoothed particle hydrodynamics formulation for thermo-capillary phase change problems with focus on metal additive manufacturing melt pool modeling, Comput. Methods Appl. Mech. Eng. 381, 113812 (2021), arXiv: 2012.08788.

    Article  MathSciNet  MATH  Google Scholar 

  45. M. H. Dao, and J. Lou, Simulations of laser assisted additive manufacturing by smoothed particle hydrodynamics, Comput. Methods Appl. Mech. Eng. 373, 113491 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  46. M. Afrasiabi, C. Lüthi, M. Bambach, and K. Wegener, Multi-resolution SPH simulation of a laser powder bed fusion additive manufacturing process, Appl. Sci. 11, 2962 (2021).

    Article  Google Scholar 

  47. J. P. Vila, On particle weighted methods and smooth particle hydrodynamics, Math. Model. Methods Appl. Sci. 09, 161 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  48. M. Antuono, A. Colagrossi, S. Marrone, and D. Molteni, Free-surface flows solved by means of SPH schemes with numerical diffusive terms, Comput. Phys. Commun. 181, 532 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  49. S. Marrone, M. Antuono, A. Colagrossi, G. Colicchio, D. Le Touzé, and G. Graziani, δ-SPH model for simulating violent impact flows, Comput. Methods Appl. Mech. Eng. 200, 1526 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  50. A. C. Crespo, J. M. Dominguez, A. Barreiro, M. Gómez-Gesteira, and B. D. Rogers, GPUs, a new tool of acceleration in CFD: Efficiency and reliability on smoothed particle hydrodynamics methods, PLoS One 6, e20685 (2011).

    Article  Google Scholar 

  51. A. J. C. Crespo, J. M. Domínguez, B. D. Rogers, M. Gómez-Gesteira, S. Longshaw, R. Canelas, R. Vacondio, A. Barreiro, and O. García-Feal, DualSPHysics: Open-source parallel CFD solver based on Smoothed Particle Hydrodynamics (SPH), Comput. Phys. Commun. 187, 204 (2015).

    Article  MATH  Google Scholar 

  52. J. L. Cercos-Pita, AQUAgpusph, a new free 3D SPH solver accelerated with OpenCL, Comput. Phys. Commun. 192, 295 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  53. G. Bilotta, A. Herault, A. Cappello, G. Ganci, and C. Del Negro, GPUSPH: a Smoothed Particle Hydrodynamics model for the thermal and rheological evolution of lava flows, Geol. Soc. London Spec. Publ. 426, 387 (2016).

    Article  Google Scholar 

  54. P. Ramachandran, A. Bhosale, K. Puri, P. Negi, A. Muta, A. Dinesh, D. Menon, R. Govind, S. Sanka, A. S. Sebastian, A. Sen, R. Kaushik, A. Kumar, V. Kurapati, M. Patil, D. Tavker, P. Pandey, C. Kaushik, A. Dutt, and A. Agarwal, PySPH: A python-based framework for smoothed particle hydrodynamics, ACM Trans. Math. Softw. 47, 1 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  55. S. J. Lind, R. Xu, P. K. Stansby, and B. D. Rogers, Incompressible smoothed particle hydrodynamics for free-surface flows: A generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves, J. Comput. Phys. 231, 1499 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  56. P. N. Sun, A. Colagrossi, S. Marrone, and A. M. Zhang, The δplus-SPH model: Simple procedures for a further improvement of the SPH scheme, Comput. Methods Appl. Mech. Eng. 315, 25 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  57. H. G. Lyu, and P. N. Sun, Further enhancement of the particle shifting technique: Towards better volume conservation and particle distribution in SPH simulations of violent free-surface flows, Appl. Math. Model. 101, 214 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  58. D. A. Barcarolo, D. Le Touzé, G. Oger, and F. de Vuyst, Adaptive particle refinement and derefinement applied to the smoothed particle hydrodynamics method, J. Comput. Phys. 273, 640 (2014).

    Article  MATH  Google Scholar 

  59. L. Chiron, G. Oger, M. de Leffe, and D. Le Touzé, Analysis and improvements of Adaptive Particle Refinement (APR) through CPU time, accuracy and robustness considerations, J. Comput. Phys. 354, 552 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  60. X. Yang, S. C. Kong, M. Liu, and Q. Liu, Smoothed particle hydrodynamics with adaptive spatial resolution (SPH-ASR) for free surface flows, J. Comput. Phys. 443, 110539 (2021), arXiv: 2008.01326.

    Article  MathSciNet  MATH  Google Scholar 

  61. F. Kalateh, and A. Koosheh, Simulation of cavitating fluid-Structure interaction using SPH-FE method, Math. Comput. Simul. 173, 51 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  62. M. B. Liu, and G. R. Liu, Restoring particle consistency in smoothed particle hydrodynamics, Appl. Numer. Math. 56, 19 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  63. M. B. Liu, and G. R. Liu, Smoothed particle hydrodynamics (SPH): An overview and recent developments, Arch. Computat. Methods Eng. 17, 25 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  64. M. Antuono, B. Bouscasse, A. Colagrossi, and S. Marrone, A measure of spatial disorder in particle methods, Comput. Phys. Commun. 185, 2609 (2014).

    Article  Google Scholar 

  65. P. N. Sun, D. Le Touzé, G. Oger, and A. M. Zhang, An accurate SPH Volume Adaptive Scheme for modeling strongly-compressible multiphase flows. Part 1: Numerical scheme and validations with basic 1D and 2D benchmarks, J. Comput. Phys. 426, 109937 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  66. P. N. Sun, D. Le Touzé, G. Oger, and A. M. Zhang, An accurate SPH Volume Adaptive Scheme for modeling strongly-compressible multiphase flows. Part 2: Extension of the scheme to cylindrical coordinates and simulations of 3D axisymmetric problems with experimental validations, J. Comput. Phys. 426, 109936 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  67. H. G. Lyu, P. N. Sun, X. T. Huang, X. R. Yin, and A. M. Zhang, in Towards numerical prediction of cavitation phenomena using the delta-plus-sph model: Proceedings of the 2022 SPHERIC Xi’an International Workshop, 2022, pp. 214–221.

  68. Y. Delannoy, in Two phase flow approach in unsteady cavitation modelling: Proceedings of Cavitation and Multiphase Flow Forum, 1990.

  69. O. Coutier-Delgosha, J. L. Reboud, and Y. Delannoy, A local mesh refinement algorithm applied to turbulent flow, Int. J. Numer. Meth. Fluids 24, 519 (1997).

    Article  Google Scholar 

  70. O. Coutier-Delgosha, R. Fortes-Patella, J. L. Reboud, N. Hakimi, and C. Hirsch, Numerical simulation of cavitating flow in 2D and 3D inducer geometries, Int. J. Numer. Meth. Fluids 48, 135 (2005).

    Article  MATH  Google Scholar 

  71. A. Colagrossi, and M. Landrini, Numerical simulation of interfacial flows by smoothed particle hydrodynamics, J. Comput. Phys. 191, 448 (2003).

    Article  MATH  Google Scholar 

  72. J. P. Morris, P. J. Fox, and Y. Zhu, Modeling low reynolds number incompressible flows using SPH, J. Comput. Phys. 136, 214 (1997).

    Article  MATH  Google Scholar 

  73. P. N. Sun, M. Luo, D. Le Touzé, and A. M. Zhang, The suction effect during freak wave slamming on a fixed platform deck: Smoothed particle hydrodynamics simulation and experimental study, Phys. Fluids 31, 117108 (2019).

    Article  Google Scholar 

  74. H. G. Lyu, R. Deng, P. N. Sun, and J. M. Miao, Study on the wedge penetrating fluid interfaces characterized by different density-ratios: Numerical investigations with a multi-phase SPH model, Ocean Eng. 237, 109538 (2021).

    Article  Google Scholar 

  75. P. N. Sun, A. Colagrossi, S. Marrone, M. Antuono, and A. M. Zhang, A consistent approach to particle shifting in the δPlus-SPH model, Comput. Methods Appl. Mech. Eng. 348, 912 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  76. H. Wendland, Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree, Adv. Comput. Math. 4, 389 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  77. M. Antuono, A. Colagrossi, and S. Marrone, Numerical diffusive terms in weakly-compressible SPH schemes, Comput. Phys. Commun. 183, 2570 (2012).

    Article  MathSciNet  Google Scholar 

  78. P. W. Randles, and L. D. Libersky, Smoothed Particle Hydrodynamics: Some recent improvements and applications, Comput. Methods Appl. Mech. Eng. 139, 375 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  79. S. B. Pope, and S. B. Pope, Turbulent Flows (Cambridge University Press, Cambridge, 2000).

    Book  MATH  Google Scholar 

  80. J. Kim, P. Moin, and R. Moser, Turbulence statistics in fully developed channel flow at low Reynolds number, J. Fluid Mech. 177, 133 (1987).

    Article  MATH  Google Scholar 

  81. A. Mayrhofer, D. Laurence, B. D. Rogers, and D. Violeau, DNS and LES of 3-D wall-bounded turbulence using Smoothed Particle Hydrodynamics, Comput. Fluids 115, 86 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  82. G. Oger, S. Marrone, D. Le Touzé, and M. de Leffe, SPH accuracy improvement through the combination of a quasi-Lagrangian shifting transport velocity and consistent ALE formalisms, J. Comput. Phys. 313, 76 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  83. X. T. Huang, P. N. Sun, H. G. Lyu, and A. M. Zhang, Numerical investigations on bionic propulsion problems using the multi-resolution Delta-plus SPH model, Eur. J. Mech.-B Fluids 95, 106 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  84. M. Jandaghian, A. Krimi, A. R. Zarrati, and A. Shakibaeinia, Enhanced weakly-compressible MPS method for violent free-surface flows: Role of particle regularization techniques, J. Comput. Phys. 434, 110202 (2021), arXiv: 2110.11447.

    Article  MathSciNet  MATH  Google Scholar 

  85. M. Jandaghian, H. M. Siaben, and A. Shakibaeinia, Stability and accuracy of the weakly compressible SPH with particle regularization techniques, Eur. J. Mech.-B Fluids 94, 314 (2022), arXiv: 2110.10076.

    Article  MathSciNet  MATH  Google Scholar 

  86. J. W. Swegle, D. L. Hicks, and S. W. Attaway, Smoothed particle hydrodynamics stability analysis, J. Comput. Phys. 116, 123 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  87. H. G. Lyu, P. N. Sun, X. T. Huang, S. H. Chen, and A. M. Zhang, On removing the numerical instability induced by negative pressures in SPH simulations of typical fluid-structure interaction problems in ocean engineering, Appl. Ocean Res. 117, 102938 (2021).

    Article  Google Scholar 

  88. P. N. Sun, A. Colagrossi, S. Marrone, M. Antuono, and A. M. Zhang, Multi-resolution Delta-plus-SPH with tensile instability control: Towards high Reynolds number flows, Comput. Phys. Commun. 224, 63 (2018).

    Article  MathSciNet  Google Scholar 

  89. G. Oger, D. Le Touzé, D. Guibert, M. de Leffe, J. Biddiscombe, J. Soumagne, and J. G. Piccinali, On distributed memory MPI-based parallelization of SPH codes in massive HPC context, Comput. Phys. Commun. 200, 1 (2016).

    Article  MathSciNet  Google Scholar 

  90. M. H. Moghimi, and N. J. Quinlan, Application of background pressure with kinematic criterion for free surface extension to suppress non-physical voids in the finite volume particle method, Eng. Anal. Bound. Elem. 106, 126 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  91. I. Federico, S. Marrone, A. Colagrossi, F. Aristodemo, and M. Antuono, Simulating 2D open-channel flows through an SPH model, Eur. J. Mech.-B Fluids 34, 35 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  92. S. Adami, X. Y. Hu, and N. A. Adams, A generalized wall boundary condition for smoothed particle hydrodynamics, J. Comput. Phys. 231, 7057 (2012).

    Article  MathSciNet  Google Scholar 

  93. D. Shepard, in A two-dimensional interpolation function for irregularly-spaced data: Proceedings of the 1968 23rd ACM national conference, (ACM, New York, 1968), pp. 517–524.

    Google Scholar 

  94. X. B. Zhang, J. K. Zhu, L. M. Qiu, and X. J. Zhang, Calculation and verification of dynamical cavitation model for quasi-steady cavitating flow, Int. J. Heat Mass Transfer 86, 294 (2015).

    Article  Google Scholar 

  95. K. Sato, and S. Shimojo, in Detailed observations on a starting mechanism for shedding of cavitation cloud: Proceedings of Fifth International Symposium on Cavitation, 2003.

  96. Y. Shen, and P. E. Dimotakis, in The influence of surface cavitation on hydrodynamic forces: Proceedings of American Towing Tank Conference, 22nd, Newfoundland, 1989.

  97. B. Huang, and G. Y. Wang, Experimental and numerical investigation of unsteady cavitating flows through a 2D hydrofoil, Sci. China Tech. Sci. 54, 1801 (2011).

    Article  MATH  Google Scholar 

  98. G. Wang, I. Senocak, W. Shyy, T. Ikohagi, and S. Cao, Dynamics of attached turbulent cavitating flows, Prog. Aerospace Sci. 37, 551 (2001).

    Article  Google Scholar 

  99. E. Roohi, A. P. Zahiri, and M. Passandideh-Fard, Numerical simulation of cavitation around a two-dimensional hydrofoil using VOF method and LES turbulence model, Appl. Math. Model. 37, 6469 (2013).

    Article  MathSciNet  Google Scholar 

  100. Y. J. Wei, C. C. Tseng, and G. Y. Wang, Turbulence and cavitation models for time-dependent turbulent cavitating flows, Acta Mech. Sin. 27, 473 (2011).

    Article  MATH  Google Scholar 

  101. L. L. Zhan, S. P. Wang, T. Li, S. Zhang, and A. M. Zhang, Numerical investigation on the cavitation instability induced by local collapse around a 2D CLARK-Y hydrofoil, Appl. Ocean Res. 102, 102300 (2020).

    Article  Google Scholar 

  102. C. Huang, T. Long, and M. B. Liu, Coupling finite difference method with finite particle method for modeling viscous incompressible flows, Int. J. Numer. Meth. Fluids 90, 564 (2019).

    Article  MathSciNet  Google Scholar 

  103. A. Di Mascio, S. Marrone, A. Colagrossi, L. Chiron, and D. Le Touzeí, SPH-FV coupling algorithm for solving multi-scale three-dimensional free-surface flows, Appl. Ocean Res. 115, 102846 (2021).

    Article  Google Scholar 

  104. M. Antuono, S. Marrone, A. Di Mascio, and A. Colagrossi, Smoothed particle hydrodynamics method from a large eddy simulation perspective. Generalization to a quasi-Lagrangian model, Phys. Fluids 33, 015102 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12002404 and 52171329), the Key-Area Research and Development Program of Guangdong Province (Grant Nos. 2020B1111010002 and 2020B1111010004), the Natural Science Foundation of Guangdong Province of China (Grant No. 2022A1515012084), and the Fundamental Research Funds for the Central Universities, Sun Yat-sen University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng-Nan Sun  (孙鹏楠).

Additional information

Author contributions

Hong-Guan Lyu are wrote the original draft, data curation, formal analysis, investigation, software, resources, validation and visualization. Peng-Nan Sun wrote a draft review, conceptualization, methodology, project administration, funding acquisition, resources and supervision. Andrea Colagrossi wrote a draft review, supervision and methodology. A-Man Zhang wrote a draft review, funding acquisition and supervision.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyu, HG., Sun, PN., Colagrossi, A. et al. Towards SPH simulations of cavitating flows with an EoSB cavitation model. Acta Mech. Sin. 39, 722158 (2023). https://doi.org/10.1007/s10409-022-22158-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-022-22158-x

Navigation