Skip to main content
Log in

Effects of bottom deflectors on aerodynamic drag reduction of a high-speed train

底部导流板对高速列车气动减阻的影响

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Inspired by the fact that bogies and bottom equipment generally contribute a great deal of aerodynamic drag to high-speed trains, this paper puts forward a simple method of mounting some small deflectors before and/or after the bogie cabins to optimize the underbody flow and reduce the aerodynamic drag of high-speed trains. The flow fields of the high-speed train models with and without bottom deflectors are numerically studied by the IDDES method. The effectiveness and further mechanism of the bottom deflectors on aerodynamic drag reduction are analyzed. It is demonstrated that the bottom deflectors could guide the underbody flow to the ground and prevent it from hitting on the bogies and bottom equipment of the train, resulting in a significant aerodynamic drag reduction effect. Moreover, the effects of different mounting locations of bottom deflectors on drag reduction are discussed as well, and an optimal mounting configuration with a drag reduction effect of up to about 12% is finally obtained. Nevertheless, the mounted deflector is also proved capable of significantly reducing the interference range of the underbody flow and reducing the slipstream of the train, which possesses a higher guarantee for the safety of railway workers and passengers waiting on the platforms. This work provides a new idea for aerodynamic drag reduction of high-speed trains, and is of great significance in energy conservation and consumption reduction.

摘要

转向架和车下设备区域是高速列车气动阻力的主要来源之一. 基于此, 本文提出一种安装于转向架舱前后端的小型导流板装置, 以改善列车的底部流动、减小列车的气动阻力. 采用IDDES方法对是否安装底部导流板的不同列车模型开展非定常数值仿真, 并对导流板的减阻效果和作用机理进行分析. 结果表明: 底部导流板可以将列车底部高速气流导向地面, 减小气流对转向架及车下设备的冲击作用, 从而产生显著的气动减阻效果. 此外, 还讨论了底部导流板不同安装位置对减阻效果的影响, 最终得到了实现整车减阻约12%的一种最佳安装方式. 同时, 导流板还能够减小底部流场在展向上的影响范围, 减小列车风, 这对铁路沿线工人和平台等候乘客的安全具有更高保障. 本研究为高速列车气动减阻提供了新思路、 新方法, 对节能减耗、可持续发展等具有重要意义.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. S. Raghunathan, H. D. Kim, and T. Setoguchi, Aerodynamics of high-speed railway train, Prog. Aerosp. Sci. 38, 469 (2002).

    Article  Google Scholar 

  2. M. Yang, J. Du, Z. Li, S. Huang, and D. Zhou, Moving model test of high-speed train aerodynamic drag based on stagnation pressure measurements, Plos One 12, e0169471 (2017).

    Article  Google Scholar 

  3. S. S. Ding, Q. Li, A. Q. Tian, J. Du, and J. L. Liu, Aerodynamic design on high-speed trains, Acta Mech. Sin. 32, 215 (2016).

    Article  Google Scholar 

  4. T. Maeda, T. Matsumura, M. Iida, K. Nakatani, and K. Uchida, in Effect of shape of train nose on compression wave generated by train entering tunnel: Proceedings of the International Conference on Speedup Technology for Railway and Maglev Vehicles, Yokohama, 1993, pp. 315–319.

  5. X. Li, G. Chen, D. Zhou, and Z. Chen, Impact of different nose lengths on flow-field structure around a high-speed train, Appl. Sci. 9, 4573 (2019).

    Article  Google Scholar 

  6. J. T. Du, A. Q. Tian, S. S. Nie, H. K. Li, and T. H. Liu, Research on the mapping relations between the drag and lift properties and the shape parameters of a high-speed train (in Chinese). J. Railw. Sci. Eng. 13, 1017 (2016).

    Google Scholar 

  7. S. Yao, D. Guo, Z. Sun, G. Yang, and D. Chen, Optimization design for aerodynamic elements of high speed trains, Comput. Fluids 95, 56 (2014).

    Article  Google Scholar 

  8. G. Xu, X. Liang, S. Yao, D. Chen, and Z. Li, Multi-objective aerodynamic optimization of the streamlined shape of high-speed trains based on the Kriging model, Plos One 12, e0170803 (2017).

    Article  Google Scholar 

  9. L. Tian, L. Ren, Q. Liu, Z. Han, and X. Jiang, The mechanism of drag reduction around bodies of revolution using bionic non-smooth surfaces, J. Bionic. Eng. 4, 109 (2007).

    Article  Google Scholar 

  10. P. P. Sun, Research on aerodynamic drag reduction of high-speed train with non-smooth surface (in Chinese), Dissertation for the Master’s Degree, (Zhejiang University, Hangzhou, 2012).

    Google Scholar 

  11. K. Tang, S. W. Ma, H. Q. Liang, and G. F. Ding, Simulation research of the drag reduction of high-speed train microstructured surfaces (in Chinese). Mach. Des&. Manuf. 9, 213 (2020).

    Google Scholar 

  12. M. Y. Wang, S. A. Hashmi, Z. X. Sun, D. L. Guo, G. Vita, G. W. Yang, and H. Hemida, Effect of surface roughness on the aerodynamics of a high-speed train subjected to crosswinds, Acta Mech. Sin. 37, 1090 (2021).

    Article  Google Scholar 

  13. V. V. Pavlov, Dolphin skin as a natural anisotropic compliant wall, Bioinspir. Biomim. 1, 31 (2006).

    Article  Google Scholar 

  14. J. Wang, S. S. Koley, and J. Katz, On the interaction of a compliant wall with a turbulent boundary layer, J. Fluid Mech. 899, A20 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  15. E. O. Shkvar, A. Jamea, S. J. E, J. C. Cai, and A. S. Kryzhanovskyi, Effectiveness of blowing for improving the high-speed trains aerodynamics, Thermophys. Aeromech. 25, 675 (2018).

    Article  Google Scholar 

  16. R. Nolte, and F. Wurtenberger, Event evaluation of energy efficiency technologies for rolling stock and train operation of railways, International Union of Railways. Deutsche Bahn AG, Berlin, 2003.

    Google Scholar 

  17. M. Suzuki, K. Nakade, and A. Ido, Countermeasures for reducing unsteady aerodynamic force acting on high-speed train in tunnel by use of modifications of train shapes, JMTL 2, 1 (2009).

    Article  Google Scholar 

  18. G. Mancini, A. Malfatti, A. G. Violi, and G. Matschke, in Effects of experimental bogie fairings on the aerodynamic drag of the ETR 500 high speed train: Proceedings of the World Congress on Railway Research, Cologne, 2001.

  19. J. Wang, G. Minelli, Y. Zhang, J. Zhang, S. Krajnović, and G. Gao, An improved delayed detached eddy simulation study of the bogie cavity length effects on the aerodynamic performance of a high-speed train, Proc. Institution Mech. Engineers Part C-J. Mech. Eng. Sci. 234, 2386 (2020).

    Article  Google Scholar 

  20. W. Liu, D. Guo, Z. Zhang, D. Chen, and G. Yang, Effects of bogies on the wake flow of a high-speed train, Appl. Sci. 9, 759 (2019).

    Article  Google Scholar 

  21. J. Zhang, J. Wang, Q. Wang, X. Xiong, and G. Gao, A study of the influence of bogie cut outs’ angles on the aerodynamic performance of a high-speed train, J. Wind Eng. Industrial AeroDyn. 175, 153 (2018).

    Article  Google Scholar 

  22. G. J. Gao, Q. R. Chen, J. Zhang, Y. Zhang, Z. Tian, and J. Chen, Numerical study on the anti-snow performance of deflectors on a high-speed train bogie frame, J. Appl. Fluid Mech. 13, 1377 (2020).

    Google Scholar 

  23. J. Niu, D. Zhou, and X. Liang, Numerical simulation of the effects of obstacle deflectors on the aerodynamic performance of stationary high-speed trains at two yaw angles, Proc. Inst. Mech. Eng. Part F-J. Rail Rapid Transit. 232, 913 (2018).

    Article  Google Scholar 

  24. Z. Guo, T. Liu, Z. Chen, Y. Xia, W. Li, and L. Li, Aerodynamic influences of bogie’s geometric complexity on high-speed trains under crosswind, J. Wind Eng. Ind. Aerodyn. 196, 104053 (2020).

    Article  Google Scholar 

  25. S. B. Yao, Z. X. Sun, D. L. Guo, D. W. Chen, and G. W. Yang, Numerical study on wake characteristics of high-speed trains, Acta Mech. Sin. 29, 811 (2013).

    Article  Google Scholar 

  26. T. W. Muld, G. Efraimsson, and D. S. Henningson, Flow structures around a high-speed train extracted using proper orthogonal decomposition and dynamic mode decomposition, Comput. Fluids 57, 87 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  27. Z. Guo, T. Liu, H. Hemida, Z. Chen, and H. Liu, Numerical simulation of the aerodynamic characteristics of double unit train, Eng. Appl. Comput. Fluid Mech. 14, 910 (2020).

    Google Scholar 

  28. STAR-CCM+ v9.06 User’s Manual. CD-adapco Co., 2014.

  29. S. Wang, J. R. Bell, D. Burton, A. H. Herbst, J. Sheridan, and M. C. Thompson, The performance of different turbulence models (URANS, SAS and DES) for predicting high-speed train slipstream, J. Wind Eng. Ind. Aerodyn. 165, 46 (2017).

    Article  Google Scholar 

  30. Z. X. Xiao, and K. Y. Luo, Improved delayed detached-eddy simulation of massive separation around triple cylinders, Acta Mech. Sin. 31, 799 (2015).

    Article  Google Scholar 

  31. C. Xia, H. Wang, X. Shan, Z. Yang, and Q. Li, Effects of ground configurations on the slipstream and near wake of a high-speed train, J. Wind Eng. Industrial AeroDyn. 168, 177 (2017).

    Article  Google Scholar 

  32. J. Wang, G. Minelli, X. Miao, J. Zhang, T. Wang, G. Gao, and S. Krajnović, The effect of bogie positions on the aerodynamic behavior of a high-speed train. An IDDES study, Flow Turbul. Combust. 107, 257 (2021).

    Article  Google Scholar 

  33. Wind tunnel test report for a new generation of high-speed trains. CRRC Qingdao Sifang Co., Ltd., 2009.

  34. C. Xia, X. Z. Shan, and Z. G. Yang, Comparison of different ground simulation systems on the flow around a high-speed train, J. Rail& Rapid Transit. 231, 135 (2017).

    Article  Google Scholar 

  35. C. Baker, The flow around high speed trains, J. Wind Eng. Ind. Aerodyn. 98, 277 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanling Ji  (纪占玲).

Additional information

This work was supported by the National Key Research & Development Projects (Grant No. 2017YFB0202801), the Strategic Priority Research Program of the Chinese Academy of Sciences (class B) (Grant No. XDB22020000), and Research project of Chinese Academy of Sciences (Grant No. XXH13506-204).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Ji, Z., Guo, D. et al. Effects of bottom deflectors on aerodynamic drag reduction of a high-speed train. Acta Mech. Sin. 38, 321251 (2022). https://doi.org/10.1007/s10409-021-09058-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-021-09058-x

Keywords

Navigation