Skip to main content
Log in

Divergence and flutter instability of magneto-thermo-elastic C-BN hetero-nanotubes conveying fluid

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

On the basis of finite element analysis, an eigenvalue problem is performed to examine the vibrational characteristics of a hetero-nanotube made of carbon (C) and boron nitride (BN) nanotubes in magnetic and thermal environment. By incorporating the assumption of nonlocal elasticity theory, the size-dependent behavior of the considered structure is also taken into account. The obtained results demonstrate that the onset of the divergence and flutter instabilities may be postponed by exploiting a hetero-nanotube rather than a uniform one composed of carbon nanotube. Moreover, it is exhibited that, in the presence of fluid flow, the mode shape configuration of nanotubes may be different from those of classical modes and therefore the later one should not be utilized in the dynamic analysis of fluid-conveying tubes. Finally, it is shown that, as the temperature decreases, the natural frequencies of the system decrease in high temperature conditions and increase for the case of room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cheng, Z.H., Zhao, W.S., Wang, D.W., et al.: Modelling and delay analysis of on-chip differential carbon nanotube interconnects. Micro Nano Lett. 14(5), 505–510 (2019)

    Google Scholar 

  2. Barretta, R., de Sciarra, F.M.: A nonlocal model for carbon nanotubes under axial loads. Adv. Mater. Sci. Eng. 2013, 360935 (2013)

    Google Scholar 

  3. Barretta, R., Faghidian, S.A., de Sciarra, F.M., et al.: Timoshenko nonlocal strain gradient nanobeams: variational consistency, exact solutions and carbon nanotube Young moduli. Mech. Adv. Mater. Struct. (2019). https://doi.org/10.1080/15376494.2019.1683660

    Article  Google Scholar 

  4. Shen, Y., He, P., Zhuang, X.: Fracture model for the prediction of the electrical percolation threshold in CNTs/polymer composites. Front. Struct. Civ. Eng. 12, 125–136 (2018)

    Google Scholar 

  5. Semmah, A., Heireche, H., Bousahla, A.A., et al.: Thermal buckling analysis of SWBNNT on winkler foundation by nonlocal FSDT. Adv. Nano Res. Int. J. 7(2), 89–98 (2019)

    Google Scholar 

  6. Nozaki, H., Itho, S.: Lattice dynamics of a layered material BC2N. Phys. B Cond. Matter. 219–220, 487–489 (1998)

    Google Scholar 

  7. Stephan, O., Ajayan, P.M., Colliex, C., et al.: Doping graphitic and carbon nanotube structures with boron and nitrogen. Science 266, 1683–1685 (1994)

    Google Scholar 

  8. Juárez, A.R., Anota, C., Cocoletzi, H.H., et al.: Stability and electronic properties of armchair boron nitride/carbon nanotubes. Fuller. Nanotub. Car. N. 25(12), 716–725 (2017)

    Google Scholar 

  9. Xiao, H., Zhang, C.X., Zhang, K.W., et al.: Tunable differential conductance of single wall C/BN nanotube heterostructure. J. Mol. Model. 19, 2965–2969 (2013)

    Google Scholar 

  10. Zhang, J., Wang, C.Y.: Beat vibration of hybrid boron nitride-carbon nanotubes—a new avenue to atomic-scale mass sensing. Comput. Mat. Sci. 127, 270–276 (2017)

    Google Scholar 

  11. Vedaei, S.S., Nadimi, E.: Gas sensing properties of CNT-BNNT-CNT nanostructures: a first principles study. Appl. Surf. Sci. 470, 933–942 (2019)

    Google Scholar 

  12. Chen, X.K., Xie, Z.X., Zhang, Y., et al.: Highly efficient thermal rectification in carbon/boron nitride Heteronanotubes. Carbon 148, 532–539 (2018)

    Google Scholar 

  13. Cheng, Q., Liu, Y.S., Wang, G.C., et al.: Free vibration of a fluid-conveying nanotube constructed by carbon nanotube and boron nitride nanotube. Physica E 109, 183–190 (2019)

    Google Scholar 

  14. Majumder, M., Chopra, N., Andrews, R., et al.: Nanoscale hydrodynamics: enhanced flow in carbon nanotubes. Nature 44, 438 (2005)

    Google Scholar 

  15. Maraghi, Z.K., Arani, A.G., Kolahchi, R., et al.: Nonlocal vibration and instability of embedded DWBNNT conveying viscose fluid. Comp. Part B 45(1), 423–432 (2013)

    Google Scholar 

  16. Askari, H., Esmailzadeh, E.: Forced vibration of fluid conveying carbon nanotubes considering thermal effect and nonlinear foundations. Comp. Part B 113, 31–43 (2017)

    Google Scholar 

  17. Chang, T.P.: Stochastic FEM on nonlinear vibration of fluid-loaded double-walled carbon nanotubes subjected to a moving load based on nonlocal elasticity theory. Comp. Part B 54, 391–399 (2013)

    Google Scholar 

  18. Zhen, Y.X., Fang, B.: Nonlinear vibration of fluid-conveying single-walled carbon nanotubes under harmonic excitation. Int. J. Non-Linear Mech. 76, 48–55 (2015)

    Google Scholar 

  19. Saadatnia, Z., Esmailzadeh, E.: Nonlinear harmonic vibration analysis of fluid-conveying piezoelectric-layered nanotubes. Comp. Part B 123, 193–209 (2017)

    Google Scholar 

  20. Heshmati, M., Amini, Y., Daneshmand, F.: Vibration and instability analysis of closed-cell poroelastic pipes conveying fluid. Eur. J. Mech. A Solids 73, 356–365 (2019)

    MathSciNet  MATH  Google Scholar 

  21. Liu, Z.Y., Jiang, T.L., Wang, L., et al.: Nonplanar flow-induced vibrations of a cantilevered PIP structure system concurrently subjected to internal and cross flows. Acta. Mech. Sin. 35, 1241–1256 (2019)

    MathSciNet  Google Scholar 

  22. Xie, W.D., Gao, X.F., Xu, W.H.: Stability and nonlinear vibrations of a flexible pipe parametrically excited by an internal varying flow density. Acta. Mech. Sin. (2019). https://doi.org/10.1007/s10409-019-00910-w

    Article  Google Scholar 

  23. Wang, L., Jiang, T.L., Dai, H.L.: Three-dimensional dynamics of supported pipes conveying fluid. Acta Mech Sin. 33, 1065–1074 (2017)

    MathSciNet  MATH  Google Scholar 

  24. Kuang, Y.D., He, X.Q., Chen, C.Y., et al.: Analysis of nonlinear vibrations of double-walled carbon nanotubes conveying fluid. Comput. Mat. Sci. 45, 875–880 (2009)

    Google Scholar 

  25. Lotfan, S., Fathi, R., Ettefagh, M.M.: Size-dependent nonlinear vibration analysis of carbon nanotubes conveying multiphase flow. Int. J. Mech. Sci. 115–116, 723–735 (2016)

    Google Scholar 

  26. Zhen, Y.X., Fang, B.: Thermal–mechanical and nonlocal elastic vibration of single-walled carbon nanotubes conveying fluid. Comput. Mat. Sci. 49, 276–282 (2010)

    Google Scholar 

  27. Zhang, Z., Liu, Y.S., Li, B.H.: Free vibration analysis of fluid-conveying carbon nanotube via wave method. Acta Mech. Solida Sinica 27(6), 626–634 (2014)

    Google Scholar 

  28. Nematollahi, M.S., Mohammadi, H., Taghvaei, S.: Fluttering and divergence instability of functionally graded viscoelastic nanotubes conveying fluid based on nonlocal strain gradient theory. Chaos 29, 033108 (2019)

    MathSciNet  MATH  Google Scholar 

  29. Farajpour, A., Farokhi, H., Ghayesh, M.H., et al.: Nonlinear mechanics of nanotubes conveying fluid. Int. J. Eng. Sci. 133, 132–143 (2018)

    MathSciNet  MATH  Google Scholar 

  30. Bahaadini, R., Saidi, A.R., Hosseini, M.: On dynamics of nanotubes conveying nanoflow. Int. J. Eng. Sci. 123, 181–196 (2018)

    MathSciNet  MATH  Google Scholar 

  31. Narendar, S., Gupta, S.S., Gopalakrishnan, S.: Wave propagation in single-walled carbon nanotube under longitudinal magnetic field using nonlocal Euler-Bernoulli beam theory. Appl. Math. Model. 36, 4529–4538 (2012)

    MathSciNet  MATH  Google Scholar 

  32. Wang, X., Lu, G., Guillow, S.R.: Magnetothermodynamic stress and perturbation of magnetic field vector in a solid cylinder. J. Therm. Stress. 25(10), 909–926 (2002)

    Google Scholar 

  33. Arani, A.G., Jalilvand, A., Kolahchi, R.: Wave propagation of magnetic nanofluid-conveying double-walled carbon nanotubes in the presence of longitudinal magnetic field. Proc. IMechE Part N: J. Nanoeng. Nanosyst 228(2), 82–92 (2014)

    Google Scholar 

  34. Wang, L., Ni, Q.: A reappraisal of the computational modelling of carbon nanotubes conveying viscous fluid. Mech. Res. Com. 36(7), 833–837 (2009)

    MATH  Google Scholar 

  35. Hosseini, M., Sadeghi-Goughari, M.: Vibration and instability analysis of nanotubes conveying fluid subjected to a longitudinal magnetic field. Appl. Math. Model. 40, 2560–2576 (2016)

    MathSciNet  MATH  Google Scholar 

  36. Sadeghi-Goughari, M., Jeon, S., Kwon, H.J.: Effects of magnetic-fluid flow on structural instability of a carbon nanotube conveying nanoflow under a longitudinal magnetic field. Phys. Lett. A 381, 2898–2905 (2017)

    Google Scholar 

  37. Rashidi, V., Mirdamadi, H.R., Shirani, E.: A novel model for vibrations of nanotubes conveying nanoflow. Comput. Mat. Sci. 51(1), 347–352 (2012)

    Google Scholar 

  38. Eringen, A.C.: Nonlocal polar elastic continua. Int. J. Eng. Sci. 10(1), 1–16 (1972)

    MathSciNet  MATH  Google Scholar 

  39. Eringen, A.C.: Linear theory of nonlocal elasticity and dispersion of plane waves. Int. J. Eng. Sci. 10(5), 425–435 (1972)

    MathSciNet  MATH  Google Scholar 

  40. Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54(9), 4703–4710 (1983)

    Google Scholar 

  41. Wang, L., Ni, Q., Li, M., et al.: The thermal effect on vibration and instability of carbon nanotubes conveying fluid. Physica E 40, 3179–3182 (2008)

    Google Scholar 

  42. Anitescu, C., Atroshchenko, E., Alajlan, N., et al.: Artificial neural network methods for the solution of second order boundary value problems. CMC: Comput. Mat. Continua. 59(1), 345–359 (2019)

    Google Scholar 

  43. Guo, H., Zhuang, X., Rabczuk, T.: A deep collocation method for the bending analysis of Kirchhoff plate. CMC: Comput. Mat. Continua. 59(2), 433–456 (2019)

    Google Scholar 

  44. Almoaeet, M.K., Shamsi, M., Khosravian-Arab, H., et al.: A collocation method of lines for two-sided space-fractional advection-diffusion equations with variable coefficients. Math. Meth. Appl. Sci. 42(10), 3465–3480 (2019)

    MathSciNet  MATH  Google Scholar 

  45. Fang, J., Wu, B., Liu, W.: An explicit spectral collocation method using nonpolynomial basis functions for the time-dependent Schrödinger equation. Math. Meth. Appl. Sci. 42(1), 186–203 (2019)

    MATH  Google Scholar 

  46. Rabczuk, T., Ren, H., Zhuang, X.: A nonlocal operator method for partial differential equations with application to electromagnetic waveguide problem. CMC: Comput. Mat. Continua. 59(1), 31–55 (2019)

    Google Scholar 

  47. Sedighi, H.M.: Size-dependent dynamic pull-in instability of vibrating electrically actuated microbeams based on the strain gradient elasticity theory. Acta Astronaut. 95, 111–123 (2014)

    Google Scholar 

  48. Barretta, R., Faghidian, S.A., de Sciarra, F.M., et al.: On torsion of nonlocal Lam strain gradient FG elastic beams. Comp. Struct. 233, 111550 (2020)

    Google Scholar 

  49. Sedighi, H.M., Keivani, M., Abadyan, M.: Modified continuum model for stability analysis of asymmetric FGM double-sided NEMS: corrections due to finite conductivity, surface energy and nonlocal effect. Comp. Part B 83, 117–133 (2015)

    Google Scholar 

  50. Alizadeh, A.: Finite element analysis of controlled low strength materials. Front. Struct. Civ. Eng. 13(5), 1243–1250 (2019)

    Google Scholar 

  51. Yu, Y., Chen, Z., Yan, R.: Finite element modeling of cable sliding and its effect on dynamic response of cable-supported truss. Front. Struct. Civ. Eng. 13(5), 1227–1242 (2019)

    Google Scholar 

  52. Nariman, A.A., Ramadan, A.M., Mohammad, I.I.: Application of coupled XFEM-BCQO in the structural optimization of a circular tunnel lining subjected to a ground motion. Front. Struct. Civ. Eng. (2019). https://doi.org/10.1007/s11709-019-0574-y

    Article  Google Scholar 

  53. Hamdia, K.M., Ghasemi, H., Zhuang, X., et al.: Sensitivity and uncertainty analysis for flexoelectric nanostructures. Comput. Meth. Appl. Mech. Eng. 337, 95–109 (2018)

    MathSciNet  MATH  Google Scholar 

  54. Vu-Bac, N., Duong, T.X., Lahmer, T., et al.: A NURBS-based inverse analysis of thermal expansion induced morphing of thin shells. Comput. Meth. Appl. Mech. Eng. 350, 480–510 (2019)

    MathSciNet  MATH  Google Scholar 

  55. Zare, A., Eghtesad, M., Daneshmand, F.: Numerical investigation and dynamic behavior of pipes conveying fluid based on isogeometric analysis. Ocean Eng. 140, 388–400 (2017)

    Google Scholar 

  56. Lee, H.L., Chang, W.J.: Free transverse vibration of the fluid-conveying single-walled carbon nanotube using nonlocal elastic theory. J. Appl. Phys. 103, 024302 (2008)

    Google Scholar 

  57. Rafiei, M., Mohebpour, S.R., Daneshmand, F.: Small-scale effect on the vibration of non-uniform carbon nanotubes conveying fluid and embedded in viscoelastic medium. Physica E 44, 1372–1379 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid M. Sedighi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sedighi, H.M. Divergence and flutter instability of magneto-thermo-elastic C-BN hetero-nanotubes conveying fluid. Acta Mech. Sin. 36, 381–396 (2020). https://doi.org/10.1007/s10409-019-00924-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-019-00924-4

Keywords

Navigation